Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Zhong Yao Cai ; 39(5): 1124-8, 2016 May.
Article in English | MEDLINE | ID: mdl-30133197

ABSTRACT

Objective: To investigate the inhibition of cell proliferation by essential oil of Chenopodium ambrosioides on the human liver cancer SMMC-7721 cells and human liver LO2 cells,and to study the mechanism of anti-tumor in vitro. Methods: The inhibition of cell proliferation by essential oil of Chenopodium ambrosioides was determined by MTT assay; the distribution of cell cycle was analyzed by flow cytometry( FCM) with PI staining; cell morphology and apoptosis effect of SMMC-7721 cells were observed by microscope; the apoptotic rate was quantified by FCM with Annexin V / PI double staining. Results: Essential oil of Chenopodium ambrosioides could significantly inhibit the cell proliferation in a concentration-time-dependent manner( P < 0. 05),and the IC50 values on SMMC-7721 cells were lower than human liver LO2 cells at 24,48 and 72 h,respectively( P < 0. 05); cell cycle of SMMC-7721 cells was arrested in G0/G1phase; morphological observation revealed that the cells were wrinkled and the cellular cohesiveness of cells was reduced; nuclear was condensed and in orange colour,of which were the late apoptotic features; and the apoptotic rate increased in a concentration-dependent manner( P < 0. 05),non-viable apoptotic rate was obviously decreased with caspase inhibitor in 100 µg / m L essential oil of Chenopodium ambrosioides( P < 0. 01). Conclusion: Essential oil of Chenopodium ambrosioides can inhibit SMMC-7721 cell proliferation, which may be related to inducing cell cycle arrest and caspase-dependent apoptosis.


Subject(s)
Chenopodium ambrosioides , Apoptosis , Carcinoma, Hepatocellular , Caspases , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms , Oils, Volatile
2.
Huan Jing Ke Xue ; 36(7): 2707-12, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26489344

ABSTRACT

A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.


Subject(s)
Biofuels , Chlorella/isolation & purification , Wastewater/microbiology , Animals , Biodegradation, Environmental , Biomass , Chlorella/classification , Lipids/chemistry , Swine , Waste Disposal, Fluid
3.
Ying Yong Sheng Tai Xue Bao ; 23(4): 1077-82, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22803477

ABSTRACT

Chenopodium ambrosioides is an invasive species, which has strong allelopathic effect on surrounding plants. In this study, the methods of soil culture and filter paper culture were adopted to simulate the eluviation and volatilization of the volatile oil from C. ambrosioides, respectively, and to investigate the allelopathy of the volatile oil on the lipid peroxidation and antioxidant enzyme activities of Vicia faba root tip cells, with the mechanisms of the induced tip cell apoptosis analyzed. At the early stage (24 h) of soil culture and filter paper culture, the superoxide dismutase, peroxidase and catalase activities of the tip cells decreased after an initial increase with the increasing dose of the volatile oil, and the malondialdehyde content of the tip cells increased with the increasing volatile oil dose and treated time. At the midterm (48 h) and later (72 h) stages of soil culture and filter paper culture, a typical DNA ladder strip appeared, suggesting that the volatile oil from C. ambrosioides could induce the apoptosis of the tip cells, and the apoptosis was dose- and time dependent. This study showed that the volatile oil from C. ambrosioides could act on its surrounding plants via eluviation and volatilization, making the lipid peroxidation of acceptor plants aggravated and the antioxidant enzyme activities of the plants inhibited, resulting in the oxidative damage and apoptosis of the plant root tip cells, and accordingly, the inhibition of the plant growth. Under soil culture, the root tip cells of V. faba had higher antioxidant enzyme activities and lesser DNA damage, suggesting that the volatile oil from C. ambrosioides via volatilization had stronger allelopathy on the growth of surrounding plants than via eluviation.


Subject(s)
Chenopodium/chemistry , Oils, Volatile/pharmacology , Oxidative Stress , Pheromones/pharmacology , Plant Roots/drug effects , Vicia faba/drug effects , Apoptosis/drug effects , Lipid Peroxidation , Oils, Volatile/isolation & purification , Plant Roots/cytology , Plant Roots/metabolism , Vicia faba/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...