Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(5): e202214931, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36433656

ABSTRACT

Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.

2.
J Am Chem Soc ; 144(3): 1138-1143, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35038262

ABSTRACT

Amide-linked covalent organic frameworks (amide COFs) possess enormous potentials in practical applications benefiting from their high stability and polyamide structures. However, they suffer from very limited accessibility. Herein, we report a new linkage conversion method to rapidly synthesize crystalline amide COFs through oxidation of imine linkages in their corresponding imine-linked frameworks with KHSO5 as an oxidant under very mild conditions. This synthetic strategy is general, facile, efficient, and scalable, as demonstrated by the procedure of simply stirring mixtures of imine-linked COFs (seven examples) and KHSO5 in anhydrous dimethylformamide for several hours to complete the conversions and gram-scale synthesis. The high efficiency of this approach enables facile production of amide COFs from widely available imine-linked COFs, which lays the foundation for exploring practical applications of this unique type of polyamide material.

3.
Chem Commun (Camb) ; 56(98): 15418-15421, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33231586

ABSTRACT

Transformation between 2D covalent organic frameworks (COFs) via exchange of molecular building blocks with different symmetries has been realized, which gives rise to the conversion between 2D COFs with distinct pore hierarchy. This type of monomer replacement has expanded the scope of the building-unit-exchange-based COF-to-COF transformation strategy.

4.
ACS Appl Mater Interfaces ; 12(31): 34990-34998, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32658445

ABSTRACT

Lithium-sulfur (Li-S) batteries have recently become a research hotspot because of their tempting theoretical capacity and energy density. Nevertheless, the notorious shuttle of polysulfides hinders the advancement of Li-S batteries. Herein, a two-dimensional covalent organic framework (COF) with extended π-conjugated units has been designed, synthesized, and used as sulfur recipients with 88.4 wt % in loading. The COF offers an elaborate platform for sufficient Li-S redox reactions with almost theoretical capacity release (1617 mA h g-1 at 0.1 C), satisfactory rate capability, and intensively traps polysulfides for a decent Coulombic efficiency (ca. 98.0%) and extremely low capacity decay (0.077% per cycle after 528 cycles at 0.5 C). The structural factors of the COF on the high-performance batteries are revealed by density functional theory calculations to be the high degrees of conjugation and proper interlayer space. This work not only demonstrates the great potential of COFs as highly efficient sulfur recipients but also provides a viable guidance for further design of COF materials to tackle shuttling issues toward active materials in electrochemical energy storage.

5.
Chem Commun (Camb) ; 56(4): 595-598, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31830150

ABSTRACT

We herein present a new family of crown ether-based covalent organic frameworks (CE-COFs) for the first time. The CE-COFs show excellent phase-transfer catalytic performance in various nucleophilic substitution reactions.

6.
Chem Commun (Camb) ; 55(31): 4550-4553, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30924825

ABSTRACT

A tetraphenylethene-based 2D covalent organic framework (COF) has been synthesized. It exhibits a very fast response and high sensitivity to the presence of gaseous HCl by way of distinct changes in fluorescence emission and color, which makes the COF a good chemosensor for spectroscopic and naked-eye detection of gaseous HCl.

SELECTION OF CITATIONS
SEARCH DETAIL
...