Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(11): 754, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980334

ABSTRACT

Glioma, the most common primary malignant tumor of the central nervous system, lacks effective targeted therapies. This study investigates the role of SOAT1, a key gene involved in cholesterol esterification, in glioma prognosis and its association with ferroptosis. Although the impact of SOAT1 on glioma prognosis has been recognized, its precise mechanism remains unclear. In this study, we demonstrate that inhibiting SOAT1 increases the sensitivity of glioma cells to ferroptosis, both in vitro and in vivo. Mechanistically, SOAT1 positively modulates the expression of SLC40A1, an iron transporter, resulting in enhanced intracellular iron outflow, reduced intracellular iron levels, and subsequent disruption of ferroptosis. Importantly, we find that SOAT1 regulates ferroptosis independently of SREBPs, which are known to be involved in ferroptosis regulation. Furthermore, we identify the involvement of the PI3K-AKT-mTOR signaling pathway in mediating the regulatory effects of SOAT1 on SLC40A1 expression and ferroptosis sensitivity. These findings highlight the contribution of intracellular signaling cascades in the modulation of ferroptosis by SOAT1. We show that inhibiting SOAT1 enhances the efficacy of radiotherapy in gliomas, both in vitro and in vivo, by promoting sensitivity to ferroptosis. This suggests that targeting SOAT1 could potentially improve therapeutic outcomes for glioma patients. In summary, this study uncovers the pivotal role of SOAT1 as a link between cholesterol esterification and ferroptosis in glioma. Our findings underscore the potential of SOAT1 as a promising clinical therapeutic target, providing new avenues for the development of effective treatments for glioma. Further research is warranted to unravel the complete regulatory mechanisms of SOAT1 and explore its clinical applications.


Subject(s)
Ferroptosis , Glioma , Humans , Ferroptosis/genetics , Phosphatidylinositol 3-Kinases , Glioma/metabolism , Cholesterol/metabolism , Iron/pharmacology
2.
Discov Nano ; 18(1): 40, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36969494

ABSTRACT

Abstract: Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed.

3.
Oxid Med Cell Longev ; 2022: 7862430, 2022.
Article in English | MEDLINE | ID: mdl-36439690

ABSTRACT

Glioma is the most common primary brain tumor, with a high rate of recurrence and treatment resistance. Glioblastoma is highly invasive, infiltrating surrounding brain parenchyma, and is known to cause intracranial metastasis resulting in a dismal prognosis. Hypoxia contributes significantly to chemo- and radiotherapy resistance in cancer. Ferroptosis is a nonapoptotic oxidative cell death that has been identified as a potential anticancer mechanism. Sulfasalazine (SAS) activates ferroptosis and plays a potential role in tumor treatment. However, the relationship between hypoxia and SAS resistance has not been elucidated. This study is aimed at investigating the role of hypoxia in SAS-induced ferroptosis and the underlying mechanisms. Here, we found that hypoxia significantly suppressed SAS-induced ferroptosis by upregulating SLC7A11 expression in the U87 and U251 glioma cell lines. Hypoxia promotes SLC7A11 expression by enhancing the PI3K/AKT/HIF-1α pathway. The AKT inhibitor MK-2206 and HIF-1α inhibitor PX-478 significantly reversed this effect. In addition, under normoxia, PX-478 induced a higher lipid peroxidation level by decreasing SLC7A11 expression in the U87 and U251 cells but could not induce cell death directly; it could significantly enhance the tumor cell killing effect of SAS. In vivo, the combination of PX-478 and SAS had a coordinated synergistic effect on anticancer activity, as revealed by subcutaneous and orthotopic xenograft mouse models. In conclusion, hypoxia enhanced glioma resistance to SAS-induced ferroptosis by upregulating SLC7A11 via activating the PI3K/AKT/HIF-1α axis. Combination therapy with PX-478 and SAS may be a potential strategy against glioma.


Subject(s)
Ferroptosis , Glioma , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Signal Transduction , Glioma/metabolism , Hypoxia/metabolism , Amino Acid Transport System y+/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...