Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Clinics (Sao Paulo) ; 76: e3131, 2021.
Article in English | MEDLINE | ID: mdl-34878029

ABSTRACT

OBJECTIVES: To investigate the molecular mechanism of edaravone (EDA) in improving the post-traumatic brain injury (TBI) dysfunction in learning and memory. METHODS: In vitro and in vivo TBI models were established using hydrogen peroxide (H2O2) treatment for hippocampal nerve stem cells (NSCs) and surgery for rats, followed by EDA treatment. WST 1 measurement, methylthiazol tetrazolium assay, and flow cytometry were performed to determine the activity, proliferation, and apoptosis of NSCs, and malondialdehyde (MDA), lactic dehydrogenase (LDH), and reactive oxygen species (ROS) detection kits were used to analyze the oxides in NSCs. RESULTS: Following EDA pretreatment, NSCs presented with promising resistance to H2O2-induced oxidative stress, whereas NSCs manifested significant increases in activity and proliferation and a decrease in apoptosis. Meanwhile, for NSCs, EDA pretreatment reduced the levels of MDA, LDH, and ROS, with a significant upregulation of Nrf2/antioxidant response element (ARE) signaling pathway, whereas for EDA-treated TBI rats, a significant reduction was observed in the trauma area and injury to the hippocampus, with improvement in memory and learning performance and upregulation of Nrf2/ARE signaling pathway. CONCLUSIONS: EDA, by regulating the activity of Nrf2/ARE signal pathway, can improve the TBI-induced injury to NSCs and learning and memory dysfunction in rats.


Subject(s)
Antioxidant Response Elements , Brain Injuries, Traumatic , Edaravone , Learning , Memory , NF-E2-Related Factor 2 , Animals , Apoptosis/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Edaravone/pharmacology , Learning/drug effects , Memory/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
3.
Clinics ; 76: e3131, 2021. graf
Article in English | LILACS | ID: biblio-1350610

ABSTRACT

OBJECTIVES: To investigate the molecular mechanism of edaravone (EDA) in improving the post-traumatic brain injury (TBI) dysfunction in learning and memory. METHODS: In vitro and in vivo TBI models were established using hydrogen peroxide (H2O2) treatment for hippocampal nerve stem cells (NSCs) and surgery for rats, followed by EDA treatment. WST 1 measurement, methylthiazol tetrazolium assay, and flow cytometry were performed to determine the activity, proliferation, and apoptosis of NSCs, and malondialdehyde (MDA), lactic dehydrogenase (LDH), and reactive oxygen species (ROS) detection kits were used to analyze the oxides in NSCs. RESULTS: Following EDA pretreatment, NSCs presented with promising resistance to H2O2-induced oxidative stress, whereas NSCs manifested significant increases in activity and proliferation and a decrease in apoptosis. Meanwhile, for NSCs, EDA pretreatment reduced the levels of MDA, LDH, and ROS, with a significant upregulation of Nrf2/antioxidant response element (ARE) signaling pathway, whereas for EDA-treated TBI rats, a significant reduction was observed in the trauma area and injury to the hippocampus, with improvement in memory and learning performance and upregulation of Nrf2/ARE signaling pathway. CONCLUSIONS: EDA, by regulating the activity of Nrf2/ARE signal pathway, can improve the TBI-induced injury to NSCs and learning and memory dysfunction in rats.


Subject(s)
Animals , Rats , Antioxidant Response Elements , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Edaravone/pharmacology , Learning/drug effects , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Memory/drug effects
4.
Technol Cancer Res Treat ; 19: 1533033820977536, 2020.
Article in English | MEDLINE | ID: mdl-33267708

ABSTRACT

To explore the role and mechanism of CERS1 in hypophysoma and investigate whether CERS1 overexpression can change the autophagy process of hypophysoma, and then to explore whether CERS1's effect was regulated by the PI3K/AKT signaling pathway. Western blot and RT-PCR were used to analyze the expression or mRNA level of CERS1 at different tissues or cell lines. Afterwards, the occurrence and development of hypophysoma in vivo and in vitro, respectively, was observed by using CERS1 overexpression by lentivirus. Finally, MK-2206 and LY294002 were applied to discuss whether the role of CERS1 was regulated by the PI3K/AKT signaling pathway. Results show that the CERS1 expression and mRNA level in tumor or AtT-20 cells were decreased. CERS1 over-expressed by lentivirus could inhibit hypophysoma development in vivo and in vitro by reducing tumor volume and weight, weakening tumor proliferation and invasion, and enhancing apoptosis. In addition, shCERS1 could reverse the process. The above results indicate that CERS1 is possibly able to enhance autophagy in hypophysoma through the PI3K/AKT signaling pathway.


Subject(s)
Autophagy/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Adult , Aged , Animals , Astrocytes/metabolism , Disease Models, Animal , Disease Susceptibility , Gene Expression , Gene Knockdown Techniques , Humans , Mice , Middle Aged , Models, Biological , Neoplasm Invasiveness , Neoplasm Staging , Pituitary Neoplasms/pathology
5.
Eur Neurol ; 83(1): 73-79, 2020.
Article in English | MEDLINE | ID: mdl-32114586

ABSTRACT

OBJECTIVE: The present study aimed to explore the effects of edaravone on neurological function, tumor necrosis factor α (TNF-α), and interleukin (IL)-8 levels in patients with cerebral infarction. METHODS: A total of 96 patients with cerebral -infarction who were admitted to the department of neurology in our hospital were enrolled in the present study, and they were randomly assigned to Group A (n = 48) and Group B (n = 48). Group A was treated with conventional therapy plus edaravone for 2 weeks and Group B with conventional therapy alone for 2 weeks. Enzyme-linked immunosorbent assay was used to determine serum TNF-α and IL-8 levels before and after treatment, and Pearson correlation analysis was conducted to analyze the correlation between serum TNF-α and IL-8 levels as well as National Institutes of Health Stroke Scale (NIHSS) score. RESULTS: After treatment, Group A had a lower NIHSS score and serum TNF-α and IL-8 levels as well as higher activities of daily living score than Group B (all p < 0.05). In addition, after treatment, no significant differences were observed between the 2 groups in terms of the presence of adverse reactions (p > 0.05). Pearson correlation analysis revealed a significant positive correlation between serum TNF-α and IL-8 levels as well as NIHSS score (r = -0.567 and r = -0.556, both p < 0.05). CONCLUSION: Edaravone can improve the neurological function of patients without causing evident adverse reactions, thereby improving quality of life, which may be correlated to decreased serum TNF-α and IL-8 levels.


Subject(s)
Cerebral Infarction/drug therapy , Edaravone/therapeutic use , Interleukin-8/blood , Neuroprotective Agents/therapeutic use , Recovery of Function/drug effects , Tumor Necrosis Factor-alpha/blood , Activities of Daily Living , Aged , Female , Humans , Interleukin-8/drug effects , Male , Middle Aged , Treatment Outcome , Tumor Necrosis Factor-alpha/drug effects
6.
Exp Ther Med ; 17(6): 4703-4708, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31086604

ABSTRACT

Long non-coding RNAs (lncRNAs) are hypothesized to regulate numerous biological behaviors in human cancers. The present study aimed to explore the roles of lncRNA bladder cancer associated transcript 1 (BLACAT1) in glioma. The expression of BLACAT1 in glioma tissues and cell lines was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). CCK-8 assay, colony formation assay, wound healing assay and Transwell invasion assay were used to explore the roles of BLACAT1 in glioma cells. RT-qPCR and western blot analysis were used to determine the BLACAT1 molecular mechanism. The findings demonstrated that lncRNA BLACAT1 was overexpressed in glioma tissues and cell lines. High BLACAT1 expression was correlated with high tumor grade in glioma patients. Functional assays determined that BLACAT1 promoted glioma cell proliferation, migration, invasion and epithelial-mesenchymal transition in vitro. In addition, it was demonstrated that BLACAT1 activated the Wnt/ß-catenin signaling pathway. In conclusion, BLACAT1 may serve as an oncogenic lncRNA in glioma progression via activation of the Wnt/ß-catenin signaling pathway. Therefore, BLACAT1 may be a novel therapeutic target for glioma treatment.

7.
FASEB J ; : fj201701386, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29932870

ABSTRACT

Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3ß and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3ß (Ser9)/total protein ( t)-GSK3ß, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3ß (Tyr216)/ t-GSK3ß expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.

8.
Biomed Pharmacother ; 93: 1-7, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28618251

ABSTRACT

INTRODUCTION: The study aimed at exploring the effects involved in Fas-Associated protein with Death Domain (FADD) expression and cysteine-aspartic acid specific protease-8 (Caspase-8) in relation to the proliferation and apoptosis of human glioblastoma (GBM) cells. MATERIAL AND METHODS: 93 GBM tissues and 64 normal brain tissues were the central mediums used for the investigation of the study. Cultured human GBM SC189 cells were divided into separate groups including the blank negative control (NC), FADD and Caspase-8 groups. The mRNA and protein expressions of FADD and Caspase-8 in tissues and human glioblastoma (GBM) cells were detected using qRT-PCR and Western blotting techniques. Cell proliferation was tested by CCK-8. Flow cytometry was used for the measure of cell cycle and apoptosis rates. RESULTS: The mRNA and protein expressions of FADD and Caspase-8 in GBM tissues were less than the levels of expression displayed in normal brain tissues. Correlations between the expressions of FADD and Caspase-8 in GBM tissues were analyzed as being linked with the clinical grades of GBM patients. Patients in stage III+IV displayed lower expressions of FADD and Caspase-8 than patients in stage I+II. In comparison with the blank group, the FADD and Caspase-8 groups showed decreased proliferation rates of SHG44 cells and lower ratios of cells in the S phase and Bcl-2 expression. Greater ratios of cells in the G0/G1 stage as well as increased cell apoptosis and expressions of Caspase-8 and Bax were exhibited. The expression of FADD in the FADD group was higher than the blank group, however no significant differences in FADD expression was observed between the blank and Caspase-8 groups. CONCLUSION: The data obtained during the study demonstrated that overexpression of FADD and Caspase-8 suppresses proliferation whilst promoting the apoptosis of human GBM cells.


Subject(s)
Apoptosis/genetics , Caspase 8/genetics , Cell Proliferation/genetics , Fas-Associated Death Domain Protein/genetics , Glioblastoma/genetics , Adult , Aged , Case-Control Studies , Cell Cycle/genetics , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , Signal Transduction/genetics
9.
Cytokine ; 92: 93-102, 2017 04.
Article in English | MEDLINE | ID: mdl-28126486

ABSTRACT

AIM: To study the effects of miR-217 on glioblastoma cell proliferation, migration and invasion and its regulation on YWHAG. METHODS: QRT-PCR was used to detect the expression of related mRNAs and miRNA in both glioblastoma tissues and cells. Western blot was used to determine the protein expression of related genes. The transfection was performed using lipo2000. MTT assay, colony formation assay, wound healing assay, Transwell assay as well as flow cytometry were employed to determine the viability, proliferation, migration, invasion and mitosis of UG87 MG cell line. Besides, the dual luciferase reporter gene assay was used to determine the direct targeting relationship between miR-217 and YWHAG. Xenograft models were also constructed and the effect of miR-217 on tumor growth was studied in vivo. RESULTS: MiR-217 was up-regulated, whereas YWHAG was down-regulated in glioblastoma tissues and cells. The down-regulation of miR-217 or the up-regulation of YWHAG suppressed the viability, proliferation, migration, invasion and mitosis of U87 MG cells in vitro. In addition, MiR-217 directly targeted 3'UTR of YWHAG and suppressed the expression of YWHAG. Up-regulation of miR-217 could efficiently attenuate the inhibitory effects of YWHAG overexpression on the proliferation and metastasis of U87 MG cells. YWHAG was able to accelerate the phosphorylation of MDM4 and lead to the degradation of P53, which provides a potential mechanism for the tumor-promoting role of miR-217 in glioblastoma cells. By constructing xenograft models, it was also confirmed that miR-217 could promote tumor growth in vivo. CONCLUSION: MiR-217 could promote the viability, proliferation, migration, invasion and mitosis of glioblastoma cells both in vitro and in vivo.


Subject(s)
14-3-3 Proteins/metabolism , Cell Proliferation , Glioblastoma/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , RNA, Neoplasm/metabolism , Animals , Cell Line, Tumor , Female , Glioblastoma/pathology , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation
10.
Int J Clin Exp Pathol ; 10(11): 10969-10978, 2017.
Article in English | MEDLINE | ID: mdl-31966441

ABSTRACT

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, about 21-25 nucleotides in length. Accumulating evidence demonstrated that dysregulation or dysfunction of miRNAs are involved in various diseases, including cancer. MiR-143, recently has been reported to function as an important tumor suppressor in prostate cancer, pancreatic ductal adenocarcinoma and other kinds of cancers, but rarely systematically studied in pituitary tumor. In the present study, we firstly found that miR-143 was significantly down-regulated in pituitary tumor tissues and cell lines (GH3 and MMQ). Then, subsequent studies revealed that miR-143 inhibits cell proliferation and promotes apoptosis in both GH3 and MMQ cells. In addition, K-Ras, one of the most important oncogenes involved in many kinds of cancers, was found to be suppressed by miR-143 in pituitary tumor. Furthermore, overexpression of K-Ras greatly reversed the suppressive effect of miR-143 on pituitary tumor cells. In summary, our study demonstrated that miR-143 functions as a tumor suppressor and directly targets K-Ras in human pituitary tumor.

SELECTION OF CITATIONS
SEARCH DETAIL
...