Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nat Commun ; 15(1): 5043, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871722

ABSTRACT

Microwave impedance microscopy (MIM) is an emerging scanning probe technique for nanoscale complex permittivity mapping and has made significant impacts in diverse fields. To date, the most significant hurdles that limit its widespread use are the requirements of specialized microwave probes and high-precision cancellation circuits. Here, we show that forgoing both elements not only is feasible but also enhances performance. Using monolithic silicon cantilever probes and a cancellation-free architecture, we demonstrate Johnson-noise-limited, drift-free MIM operation with 15 nm spatial resolution, minimal topography crosstalk, and an unprecedented sensitivity of 0.26 zF/√Hz. We accomplish this by taking advantage of the high mechanical resonant frequency and spatial resolution of silicon probes, the inherent common-mode phase noise rejection of self-referenced homodyne detection, and the exceptional stability of the streamlined architecture. Our approach makes MIM drastically more accessible and paves the way for advanced operation modes as well as integration with complementary techniques.

2.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809979

ABSTRACT

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Subject(s)
Acetates , CD8-Positive T-Lymphocytes , Carbon Isotopes , Glutamine , Glutamine/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Acetates/metabolism , Mice , Listeriosis/metabolism , Listeriosis/immunology , Listeriosis/microbiology , Listeria monocytogenes , Citric Acid Cycle , Glucose/metabolism , Mice, Inbred C57BL
3.
Front Immunol ; 15: 1342625, 2024.
Article in English | MEDLINE | ID: mdl-38449858

ABSTRACT

Introduction: Despite aggressive standard-of-care therapy, including surgery, radiation, and chemotherapy, glioblastoma recurrence is almost inevitable and uniformly lethal. Activation of glioma-intrinsic Wnt/ß-catenin signaling is associated with a poor prognosis and the proliferation of glioma stem-like cells, leading to malignant transformation and tumor progression. Impressive results in a subset of cancers have been obtained using immunotherapies including anti-CTLA4, anti-PD-1, and anti-PD-L1 or chimeric antigen receptor (CAR) T cell therapies. However, the heterogeneity of tumors, low mutational burden, single antigen targeting, and associated antigen escape contribute to non-responsiveness and potential tumor recurrence despite these therapeutic efforts. In the current study, we determined the effects of the small molecule, highly specific Wnt/CBP (CREB Binding Protein)/ß-catenin antagonist ICG-001, on glioma tumor cells and the tumor microenvironment (TME)-including its effect on immune cell infiltration, blood vessel decompression, and metabolic changes. Methods: Using multiple glioma patient-derived xenografts cell lines and murine tumors (GL261, K-Luc), we demonstrated in vitro cytostatic effects and a switch from proliferation to differentiation after treatment with ICG-001. Results: In these glioma cell lines, we further demonstrated that ICG-001 downregulated the CBP/ß-catenin target gene Survivin/BIRC5-a hallmark of Wnt/CBP/ß-catenin inhibition. We found that in a syngeneic mouse model of glioma (K-luc), ICG-001 treatment enhanced tumor infiltration by CD3+ and CD8+ cells with increased expression of the vascular endothelial marker CD31 (PECAM-1). We also observed differential gene expression and induced immune cell infiltration in tumors pretreated with ICG-001 and then treated with CAR T cells as compared with single treatment groups or when ICG-001 treatment was administered after CAR T cell therapy. Discussion: We conclude that specific Wnt/CBP/ß-catenin antagonism results in pleotropic changes in the glioma TME, including glioma stem cell differentiation, modulation of the stroma, and immune cell activation and recruitment, thereby suggesting a possible role for enhancing immunotherapy in glioma patients.


Subject(s)
Glioma , beta Catenin , Humans , Animals , Mice , Wnt Signaling Pathway , Neoplasm Recurrence, Local , Immunotherapy , Glioma/therapy , Tumor Microenvironment
4.
Comput Biol Med ; 171: 108114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401450

ABSTRACT

BACKGROUND: Bacteria can have beneficial effects on our health and environment; however, many are responsible for serious infectious diseases, warranting the need for vaccines against such pathogens. Bioinformatic and experimental technologies are crucial for the development of vaccines. The vaccine design pipeline requires identification of bacteria-specific antigens that can be recognized and can induce a response by the immune system upon infection. Immune system recognition is influenced by the location of a protein. Methods have been developed to determine the subcellular localization (SCL) of proteins in prokaryotes and eukaryotes. Bioinformatic tools such as PSORTb can be employed to determine SCL of proteins, which would be tedious to perform experimentally. Unfortunately, PSORTb often predicts many proteins as having an "Unknown" SCL, reducing the number of antigens to evaluate as potential vaccine targets. METHOD: We present a new pipeline called subCellular lOcalization prediction for BacteRiAl Proteins (mtx-COBRA). mtx-COBRA uses Meta's protein language model, Evolutionary Scale Modeling, combined with an Extreme Gradient Boosting machine learning model to identify SCL of bacterial proteins based on amino acid sequence. This pipeline is trained on a curated dataset that combines data from UniProt and the publicly available ePSORTdb dataset. RESULTS: Using benchmarking analyses, nested 5-fold cross-validation, and leave-one-pathogen-out methods, followed by testing on the held-out dataset, we show that our pipeline predicts the SCL of bacterial proteins more accurately than PSORTb. CONCLUSIONS: mtx-COBRA provides an accessible pipeline that can more efficiently classify bacterial proteins with currently "Unknown" SCLs than existing bioinformatic and experimental methods.


Subject(s)
Bacterial Proteins , Vaccines , Bacterial Proteins/chemistry , Software , Bacteria , Amino Acid Sequence , Computational Biology/methods
5.
Bioanalysis ; 16(7): 149-163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385904

ABSTRACT

Aims: AZD7442 is a combination SARS-CoV-2 therapy comprising two co-dosed monoclonal antibodies. Materials & methods: The authors validated a hybrid ligand-binding assay-LC-MS/MS method for pharmacokinetic assessment of AZD7442 in human serum with nominal concentration range of each analyte of 0.300-30.0 µg/ml. Results: Validation results met current regulatory acceptance criteria. The validated method supported three clinical trials that spanned more than 17 months and ≥720 analytical runs (∼30,000 samples and ∼3000 incurred sample reanalyses per analyte). The data generated supported multiple health authority interactions, across the globe. AZD7442 (EVUSHELD) was approved in 12 countries for pre-exposure prophylaxis of COVID-19. Conclusion: The results reported here demonstrate the robust, high-throughput capability of the hybrid ligand-binding assay-LC-MS/MS approach being employed to support-next generation versions of EVUSHELD, AZD3152.


The measurement of antibodies in human body fluids (e.g., blood, serum) has historically been tied to laboratory tests that may face operational limitations, including susceptibility to interference from other blood components and a reliance on unique reagents that can take months to produce. As such, there is a pursuit of alternative analytical methods to more accurately detect and measure antibody drugs from complex matrices. In the method, the authors describe different techniques that once combined were used to capture, separate, filter, fragment and then detect and measure the co-dosed antibody drugs. This method has been validated in accordance with current health authority guidelines and has been used to support three clinical trials that spanned more than 17 months; that is, the validated method was used to analyze nearly 30,000 serum samples from more than 2000 patients. Collectively, the results reported here demonstrate the robustness and high-throughput capability of this analytical approach.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Liquid Chromatography-Mass Spectrometry , Humans , Chromatography, Liquid/methods , Ligands , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Drug Combinations
6.
Article in English | MEDLINE | ID: mdl-37579604

ABSTRACT

A hybrid immunoaffinity LC-MS/MS assay was developed and validated for the quantitation of total antibody (TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. PYX-201 was proteolyzed using trypsin, and a characteristic peptide fragment PYX-201 P1 with ten amino acids IPPTFGQGTK from the complementarity-determining regions (CDRs) was used as a surrogate for the quantitation of the TAb from PYX-201. Stable isotope labelled (SIL) peptide I(13C6, 15N)PPTFG(13C9, 15N)QGTK was used as the internal standard (IS). We performed chromatographic analysis using a Waters Acquity BEH Phenyl column (2.1 mm × 50 mm, 1.7 µm). Quantification of PYX-201 TAb was carried out on a Sciex triple quadrupole mass spectrometer API 6500 using multiple reaction monitoring (MRM) mode with positive electrospray ionization. To validate PYX-201 TAb, a concentration range of 0.0500 µg/mL to 20.0 µg/mL was used, yielding a correlation coefficient (r) of ≥ 0.9947. For intra-assay measurements, the percent relative error (%RE) ranged from -23.2% to 1.0%, with a coefficient of variation (%CV) of ≤ 14.2%. In terms of inter-assay measurements, the %RE was between -10.5% and -5.7%, with a %CV of ≤ 12.7%. The average recovery of the analyte was determined to be 81.4%, while the average recovery of the internal standard (IS) was 97.2%. Furthermore, PYX-201 TAb demonstrated stability in human plasma and human whole blood under various tested conditions. This assay has been successfully applied to human sample analysis to support a clinical study.


Subject(s)
Peptide Fragments , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results
7.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37516105

ABSTRACT

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Subject(s)
CD8-Positive T-Lymphocytes , Histones , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Acetylation , Histones/metabolism , Ketone Bodies , Animals , Mice
8.
Cureus ; 15(5): e39562, 2023 May.
Article in English | MEDLINE | ID: mdl-37378190

ABSTRACT

Leiomyosarcoma is a rare type of tumor of smooth muscle cells that can occur anywhere in the body. However, it typically occurs in the retroperitoneum, intra-abdominal sites, and uterus in people over 65. Here is a case of a 71-year-old male with a history of melanoma of the skin who presented with a rapidly enlarging, non-tender lump at his left lateral thigh area that was later diagnosed as pleomorphic dedifferentiated leiomyosarcoma. The patient underwent radical resection of the tumor and the attached vastus lateralis muscle and partial lateral collateral ligament, followed by radiation therapy to the resected site. He had no evidence of tumor recurrence on follow-up imaging for several months until he was found to have metastatic disease to the lungs on a surveillance CT one year later. A biopsy confirmed that the lung nodules were leiomyosarcoma metastases, and the patient was started on chemotherapy and stereotactic body radiation therapy (SBRT). Upon reviewing the literature, a few cases of leiomyosarcoma arising from the thigh muscles were found.

9.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333111

ABSTRACT

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

10.
Elife ; 122023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261423

ABSTRACT

CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.


Subject(s)
Aspartic Acid , Neoplasms , Humans , Cell Line, Tumor , Neoplasms/pathology , Animals , Mice
11.
Article in English | MEDLINE | ID: mdl-37352642

ABSTRACT

PYX-201 is an investigational antibody drug conjugate (ADC) with an engineered, fully human IgG1 antibody, a cleavable chemical linker, and a toxin (Aur0101) with an average drug-antibody ratio (DAR) of âˆ¼ 4. A sensitive and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and fully validated to determine the presence in human plasma, of free payload Aur0101 from PYX-201 to assess drug safety and efficacy. Aur0101 and its deuterated internal standard (IS), Aur0101_d8, were extracted from 25 µL of human plasma using a solid liquid extraction (SLE) method. Chromatographic analysis was carried out on a Waters Acquity UPLC BEH C18 (2.1 mm × 50 mm, 1.7 µm, 130 A) column. Quantitation of free Aur0101 was conducted on a Sciex triple quadrupole mass spectrometer API 6500 + using multiple reaction monitoring (MRM) mode via positive electrospray ionization. The calibration curve was linear over the concentration range of 25.0 to 12,500 pg/mL with correlation coefficient, r2 ≥ 0.9988. The intra-assay %RE was between -4.3% to 14.3% with % CV was ≤ 6.2%. The inter-assay %RE was between -0.2% to 9.5% with % CV was ≤ 6.1%. The average analyte recovery was 89.7% and the average IS recovery was 88.7%. Aur0101 was found to be stable in human plasma and human whole blood under various tested conditions with and without the presence of PYX-201. To our knowledge, this is the first published fully validated assay for free, unconjugated Aur0101 in any matrix, from any species. This assay has been successfully applied to clinical sample analysis to support clinical studies.


Subject(s)
Immunoconjugates , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization
12.
Cureus ; 15(4): e37096, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37153303

ABSTRACT

Gray zone lymphoma (GZL) is defined as a B-cell lymphoma with intermediate features between both diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin lymphoma (CHL). GZL is an aggressive disease, which in addition to the B-symptoms, can present as shortness of breath and neck swelling from underlying superior vena cava (SVC) syndrome. Thrombosis of the internal jugular vein (IJVT) is rare and usually associated with head and neck infection, intravenous (IV) drug abuse, and central venous catheter placement. GZL's initial presentation as IJVT with SVC syndrome is very uncommon. We report the case of a 47-year-old female presenting with neck swelling and shortness of breath. Initial investigations were oriented at the thyroid gland. A computerized tomography (CT) scan of the chest, neck, and head showed a large anterior/superior mediastinal soft tissue mass with left IJVT. An excisional biopsy of the left axillary lymph node confirmed the diagnosis of GZL. The mediastinal lymphoma can compress the internal jugular vein and also release thrombogenic substances that can cause IJVT. The compression of the SVC by the lymphoma and the IJVT formation can cause SVC syndrome. Both of these conditions can be life-threatening and should be identified in the early stages to prevent complications.

13.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37230079

ABSTRACT

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Autoimmunity , T-Lymphocytes , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Autoimmune Diseases/drug therapy , Hypoglycemic Agents/pharmacology
14.
bioRxiv ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37066282

ABSTRACT

Chronic high-fat feeding triggers widespread metabolic dysfunction including obesity, insulin resistance, and diabetes. While these ultimate pathological states are relatively well understood, we have a limited understanding of how high-fat intake first triggers physiological changes. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on spatial and learning memory. Acute high-fat intake increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation, fission and metabolic skewing towards aerobic glycolysis. These effects are generalized, detectable in the hypothalamus, hippocampus, and cortex all within 1-3 days of HFD exposure. In vivo microglial ablation and conditional DRP1 deletion experiments show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via ß-oxidation, microglia shunt a substantial fraction of palmitate towards anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuro-protective metabolite itaconate. Together, these data identify microglial cells as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons instead as alternate bioenergetic and protective substrates. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.

15.
Article in English | MEDLINE | ID: mdl-37094503

ABSTRACT

PYX-201 is an anti-extra domain B splice variant of fibronectin (EDB + FN) antibody drug conjugate (ADC) composed of a fully human IgG1 antibody, a cleavable mcValCitPABC linker, and four Auristatin 0101 (Aur0101, PF-06380101) payload molecules. To better understand the pharmacokinetic (PK) profile of PYX-201 after it is administered to cancer patients, the development of a reliable bioanalytical assay to accurately and precisely quantitate PYX-201 in human plasma is required. In this manuscript, we present a hybrid immunoaffinity LC-MS/MS assay used to successfully analyze PYX-201 in human plasma. PYX-201 was enriched by MABSelect beads coated with protein A in human plasma samples. The bound proteins were subjected to "on-bead" proteolysis with papain to release the payload Aur0101. The stable isotope labelled internal standard (SIL-IS) Aur0101-d8 was added and the released Aur0101 was quantified as a surrogate for the total ADC concentration. The separation was performed on a UPLC C18 column coupled with tandem mass spectrometry. The LC-MS/MS assay was validated over the range 0.0250 to 25.0 µg/mL with excellent accuracy and precision. The overall accuracy (%RE) was between -3.8% and -0.1% and the inter-assay precision (%CV) was <5.8%. PYX-201 was found to be stable in human plasma for at least 24 h on ice, 15 days after being stored at -80 °C, as well as after five freeze/thaw cycles of being frozen at -25 °C or -80 °C and thawed on ice. The assay this paper reports on, has been successfully applied to human sample analysis to support clinical studies.


Subject(s)
Immunoconjugates , Humans , Chromatography, Liquid/methods , Immunoconjugates/chemistry , Tandem Mass Spectrometry/methods , Ice/analysis
16.
Sci Rep ; 13(1): 2748, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797364

ABSTRACT

Previous study from our lab has revealed a new role of CD47 in regulating adipose tissue function, energy homeostasis and the development of obesity and metabolic disease in CD47 deficient mice. In this study, the therapeutic potential of an antisense oligonucleotide (ASO) targeting to CD47 in obesity and its-associated complications was determined in two obese mouse models (diet induced and genetic models). In diet induced obesity, male C57BL6 mice were fed with high fat (HF) diet to induce obesity and then treated with CD47ASO or control ASO for 8 weeks. In genetic obese mouse model, male six-week old ob/ob mice were treated with ASOs for 9 weeks. We found that CD47ASO treatment reduced HF diet-induced weight gain, decreased fat mass, prevented dyslipidemia, and improved glucose tolerance. These changes were accompanied by reduced inflammation in white adipose tissue and decreased hepatic steatosis. This protection was also seen in CD47ASO treated ob/ob mice. Mechanistically, CD47ASO treatment increased mice physical activity and energy expenditure, contributing to weight loss and improved metabolic outcomes in obese mice. Collectively, these findings suggest that CD47ASO might serve as a new treatment option for obesity and its-associated metabolic complications.


Subject(s)
Insulin Resistance , Oligonucleotides, Antisense , Animals , Male , Mice , CD47 Antigen/metabolism , Diet, High-Fat , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/genetics
17.
Anal Chem ; 94(43): 14835-14845, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36269894

ABSTRACT

AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Reproducibility of Results , Antibodies, Monoclonal/analysis , Indicators and Reagents , Antibodies, Viral
18.
Nano Lett ; 22(20): 8389-8393, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36112673

ABSTRACT

Sharp resonances can strongly modify the electromagnetic response of matter. A classic example is the Reststrahlen effect - high reflectivity in the mid-infrared in many polar crystals near their optical phonon resonances. Although this effect in bulk materials has been studied extensively, a systematic treatment for finite thickness remains challenging. Here we describe, experimentally and theoretically, the Reststrahlen response in hexagonal boron nitride across more than 5 orders of magnitude in thickness, down to a monolayer. We find that the high reflectivity plateau of the Reststrahlen band evolves into a single peak as the material enters the optically thin limit, within which two distinct regimes emerge: a strong-response regime dominated by coherent radiative decay and a weak-response regime dominated by damping. We show that this evolution can be explained by a simple two-dimensional sheet model that can be applied to a wide range of thin media.


Subject(s)
Phonons , Vibration
19.
Sci Rep ; 12(1): 16028, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163487

ABSTRACT

Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-ß (IFN-ß), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1ß (PGC-1ß), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-ß, when OXPHOS is maintained. We examined the role of PGC-1ß in bioenergetic metabolism of DCs and found that PGC-1ß deficiency indeed impairs their mitochondrial respiration. PGC-1ß-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1ß deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-ß treatment. Loss of PGC-1ß in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1ß is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.


Subject(s)
Lipopolysaccharides , PPAR gamma , Adenosine Triphosphate , Gene Expression , Interferon-beta/genetics , Interferon-beta/metabolism , Lipopolysaccharides/pharmacology , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Cell Metab ; 34(9): 1298-1311.e6, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35981545

ABSTRACT

How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Carbon , CD8-Positive T-Lymphocytes/metabolism , Carbon/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL
...