Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Huan Jing Ke Xue ; 44(11): 5964-5974, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973081

ABSTRACT

Based on the PM1 mass concentration data from all the air quality monitoring stations in China from 2014 to 2017, the temporal and spatial distribution characteristics of PM1 concentration were studied using the time series statistical and spatial hierarchical clustering methods, and the PM1 spatiotemporal evolution characteristics were revealed. Combined with AOD data of the MODIS remote-sensing satellite, the temporal and spatial variation in PM1-AOD correlation was analyzed on a fine scale. The results showed that, from 2014 to 2017, the annual average PM1 concentration in China decreased yearly, the seasonal PM1 concentration showed the characteristics of "high in winter and low in summer," and the monthly average PM1 concentration showed a "U"-shaped variation. An "M"-shaped PM1 variation pattern was presented before and after the holidays. Weekly variation showed that high PM1 values occurred on Mondays and Fridays, and low ones occurred on Sundays. Based on the spatial clustering method, the national average annual PM1 concentration in China was divided into seven categories, and the overall spatial distribution pattern was "high in the east and low in the west and high in the north and low in the south." The highest and the lowest values of average PM1 concentration occurred in central China(54.59 µg·m-3) and in Xinjiang-Qinghai-Xizang(11.37 µg·m-3), respectively. The PM1-AOD relationship was positively correlated as a whole, the highest correlation coefficient was 0.55 in central China, and the lowest value was 0.36 in central and southern China.

2.
Mediators Inflamm ; 2021: 3698386, 2021.
Article in English | MEDLINE | ID: mdl-34545275

ABSTRACT

Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients. However, it is still unclear whether GATA4 p.S335X mutation could influence the development of CAD. GATA4 wild-type (WT) and p.S335X mutant (MU) overexpression plasmids were constructed and transfected transiently into rat coronary artery smooth muscle cell (RCSMC) to observe the proliferative and migratory abilities by MTS and wound healing assay, respectively. PCR array was used to preliminarily detect the expression of phenotypic modulation-related genes, and QRT-PCR was then carried out to verify the screened differentially expressed genes (DEGs). The results showed that, when stimulated by fetal bovine serum (10%) for 24 h or tumor necrosis factor-α (10 or 30 ng/ml) for 10 or 24 h, deletion of GATA4 C-terminus by p.S335X mutation in GATA4 enhanced the proliferation of RCSMC, without alteration of the migration capability. Twelve DEGs, including Fas, Hbegf, Itga5, Aimp1, Cxcl1, Il15, Il2rg, Il7, Tnfsf10, Il1r1, Irak1, and Tlr3, were screened and identified as phenotypic modulation-related genes. Our data might be beneficial for further exploration regarding the mechanisms of GATA4 p.S335X mutation on the phenotypic modulation of coronary VSMC.


Subject(s)
Coronary Vessels/physiology , GATA4 Transcription Factor/genetics , Muscle, Smooth, Vascular/cytology , Mutation , Myocytes, Smooth Muscle/physiology , Animals , Cell Movement , Cell Proliferation , Cells, Cultured , Coronary Artery Disease/etiology , GATA4 Transcription Factor/physiology , Muscle, Smooth, Vascular/physiology , Phenotype , Rats
3.
J Alzheimers Dis ; 81(3): 1181-1194, 2021.
Article in English | MEDLINE | ID: mdl-33896839

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease. One of the pathologies of AD is the accumulation of amyloid-ß (Aß) to form senile plaques, leading to a decline in cognitive ability and a lack of learning and memory. However, the cause leading to Aß aggregation is not well understood. Dendritic cell factor 1 (Dcf1) shows a high expression in the entorhinal cortex neurons and neurofibrillary tangles in AD patients. OBJECTIVE: Our goal is to investigate the effect of Dcf1 on Aß aggregation and memory deficits in AD development. METHODS: The mouse and Drosophila AD model were used to test the expression and aggregation of Aß, senile plaque formation, and pathological changes in cognitive behavior during dcf1 knockout and expression. We finally explored possible drug target effects through intracerebroventricular delivery of Dcf1 antibodies. RESULTS: Deletion of Dcf1 resulted in decreased Aß42 level and deposition, and rescued AMPA Receptor (GluA2) levels in the hippocampus of APP-PS1-AD mice. In Aß42 AD Drosophila, the expression of Dcf1 in Aß42 AD flies aggravated the formation and accumulation of senile plaques, significantly reduced its climbing ability and learning-memory. Data analysis from all 20 donors with and without AD patients aged between 80 and 90 indicated a high-level expression of Dcf1 in the temporal neocortex. Dcf1 contributed to Aß aggregation by UV spectroscopy assay. Intracerebroventricular delivery of Dcf1 antibodies in the hippocampus reduced the area of senile plaques and reversed learning and memory deficits in APP-PS1-AD mice. CONCLUSION: Dcf1 causes Aß-plaque accumulation, inhibiting dcf1 expression could potentially offer therapeutic avenues.


Subject(s)
Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Membrane Proteins/genetics , Memory Disorders/genetics , Nerve Tissue Proteins/genetics , Protein Aggregation, Pathological/genetics , Aged, 80 and over , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Conditioning, Classical/physiology , Drosophila melanogaster , Hippocampus/pathology , Humans , Learning/physiology , Membrane Proteins/metabolism , Memory/physiology , Memory Disorders/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Receptors, AMPA/metabolism
4.
Plant Biotechnol J ; 19(2): 285-299, 2021 02.
Article in English | MEDLINE | ID: mdl-32757335

ABSTRACT

Changes in carbohydrates and organic acids largely determine the palatability of edible tissues of horticulture crops. Elucidating the potential molecular mechanisms involved in the change in carbohydrates and organic acids, and their temporal and spatial crosstalk are key steps in understanding fruit developmental processes. Here, we used apple (Malus domestica Borkh.) as research materials and found that MdbHLH3, a basic helix-loop-helix transcription factor (bHLH TF), modulates the accumulation of malate and carbohydrates. Biochemical analyses demonstrated that MdbHLH3 directly binds to the promoter of MdcyMDH that encodes an apple cytosolic NAD-dependent malate dehydrogenase, activating its transcriptional expression, thereby promoting malate accumulation in apple fruits. Additionally, MdbHLH3 overexpression increased the photosynthetic capacity and carbohydrate levels in apple leaves and also enhanced the carbohydrate accumulation in fruits by adjusting carbohydrate allocation from sources to sinks. Overall, our findings provide new insights into the mechanism of how the bHLH TF MdbHLH3 modulates the fruit quality. It directly regulates the expression of cytosolic malate dehydrogenase MdcyMDH to coordinate carbohydrate allocation and malate accumulation in apple.


Subject(s)
Malus , Basic Helix-Loop-Helix Transcription Factors/genetics , Fructose , Fruit/metabolism , Gene Expression Regulation, Plant , Malates , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Medicine (Baltimore) ; 98(47): e18019, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31764817

ABSTRACT

We aimed to investigate the correlation of homocysteine (Hcy) level with clinical characteristics, and explore its predictive value for major adverse cardiovascular events (MACE) risk in female patients with premature acute coronary syndrome (ACS).The serum Hcy level was detected from 1299 female patients with premature ACS. According to the tertile of Hcy level, patients were divided into 3 groups: lowest tertile group (≤9.1 µmol/L), middle tertile group (9.2-11.6 µmol/L) and highest tertile group (>11.6 µmol/L). MACE incidence was recorded and MACE-free survival was caculated with the median follow-up duration of 28.3 months.Increased Hcy correlated with older age (P < .001), higher creatinine level (P < .001), and enhanced uric acid level (P = .001), while reduced fasting glucose concentration (P < .001). MACE incidence was 10.7% and it was highest in highest tertile group (22.1%), followed by middle tertile group (7.7%) and lowest tertile group (2.4%) (P < .001). Receiver operating characteristic curve showed that Hcy distinguished MACE patients from non-MACE patients with the area under the curve of 0.789 (95% CI: 0.742-0.835). Kaplan-Meier curves revealed that MACE-free survival was shortest in Hcy highest tertile group, followed by middle tertile group and lowest tertile group (P < .001). Multivariate Cox analyses further showed that higher Hcy level was an independent predictive factor for poor MACE-free survival (middle tertile vs lowest tertile (P = .001, HR: 3.615, 95% CI: 1.661-7.864); highest tertile vs lowest tertile (P < .001, HR: 11.023, 95% CI: 5.356-22.684)).Hcy serves as a potential predictive factor for increased MACE risk in female patients with premature ACS.


Subject(s)
Acute Coronary Syndrome/blood , Acute Coronary Syndrome/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Homocysteine/blood , Age Factors , Female , Humans , Incidence , Middle Aged , Predictive Value of Tests , Risk Assessment
6.
Plant Sci ; 287: 110175, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31481217

ABSTRACT

Plant root systems ensure the efficient absorption of water and nutrients and provide anchoring into the soil. Although root systems are a highly plastic set of traits that vary both between and among species, the basic root system morphology is controlled by inherent genetic factors. TCP20 has been identified as a key regulator of root development in plants, and yet its underlying mechanism has not been fully elucidated, especially in chrysanthemum. We found that overexpression of the CmTCP20 gene promoted both adventitious and lateral root development in chrysanthemum. To get further insight into the molecular mechanisms controlling root system development, we conducted a study employing tandem mass tag proteomic to characterize the differential root system development proteomes from CmTCP20-overexpressing and wild-type chrysanthemum root samples. Of the proteins identified, 234 proteins were found to be differentially abundant (>1.5-fold cut off, p < 0.05) in CmTCP20-overexpressing versus wild-type chrysanthemum root samples. Functional enrichment analysis indicated that the CmTCP20 gene may participate in "phytohormone signal transduction". Our findings provide a valuable perspective on the mechanisms of both adventitious and lateral root development via CmTCP20 modulation at the proteome level in chrysanthemum.


Subject(s)
Chrysanthemum/metabolism , Genes, Plant/physiology , Plant Roots/growth & development , Chlorophyll/metabolism , Chromatography, High Pressure Liquid , Chrysanthemum/genetics , Chrysanthemum/growth & development , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Photosynthesis , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Proteomics , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Plant Cell Physiol ; 60(7): 1581-1594, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31058993

ABSTRACT

Lateral root (LR) formation and development play a vital role in plant development by permitting the establishment of branched root systems. It is well known that nutrient availability controls LR development. Moreover, LR development is fine-tuned by a myriad of hormonal signals. Many transcription factors (TFs) participate in LR development. Here, we discuss the TFs involved in the nitrate and auxin signaling pathways and how these function in the regulation of LR formation and development in chrysanthemum. AtTCP20 is a plant-specific TF, which can modulate LR development in response to nitrate. The roles of CmTCP20 in LR development were identified by overexpression in chrysanthemum and heterologous expression in Arabidopsis. Overexpression of CmTCP20 significantly increased the number and average length of LRs compared with the wild type in chrysanthemum and Arabidopsis. We also found that CmTCP20 positively influenced auxin accumulation in the LRs at least partly by improving auxin biosynthesis, transport and response, thereby promoting LR development. Moreover, we found that CmTCP20 interacts with an auxin response factor, CmARF8, which also can be induced by nitrate and combined to proximal sites in the upstream promoter region of CmCYCB1;1 to positively regulate the cell cycle. The CmTCP20-CmARF8 heterodimer links nitrate and auxin signaling and converts cell-cycle signals to regulate LR initiation and growth.


Subject(s)
Chrysanthemum/growth & development , Indoleacetic Acids/metabolism , Nitrates/metabolism , Plant Proteins/physiology , Plant Roots/growth & development , Transcription Factors/physiology , Arabidopsis , Chrysanthemum/metabolism , Chrysanthemum/physiology , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Plants, Genetically Modified , Signal Transduction , Transcription Factors/metabolism
8.
Curr Med Res Opin ; 35(8): 1355-1364, 2019 08.
Article in English | MEDLINE | ID: mdl-30810054

ABSTRACT

Objective: Baloxavir marboxil (baloxavir) is the first cap-dependent endonuclease inhibitor being studied for the treatment of influenza in single oral dosing regimen. This network meta-analysis (NMA) evaluated the efficacy and safety of baloxavir compared to other antivirals for influenza in otherwise healthy patients. Methods: A systematic literature review was performed on 14 November 2016 in Medline, Embase, CENTRAL, and ICHUSHI to identify randomized controlled trials assessing antivirals for influenza. A NMA including 22 trials was performed to compare the efficacy and safety of baloxavir with other antivirals. Results: The time to alleviation of all symptoms was significantly shorter for baloxavir compared to zanamivir (difference in median time 19.96 h; 95% CrI [3.23, 39.07]). The time to cessation of viral shedding was significantly shorter for baloxavir than zanamivir and oseltamivir (47.00 h; 95% CrI [28.18, 73.86] and 56.03 h [33.74, 87.86], respectively). The mean decline in virus titer from baseline to 24 h was significantly greater for baloxavir than for the other drugs. Other differences in efficacy outcomes were not significant. No significant differences were found between baloxavir and the other antivirals for safety, except total drug-related adverse events where baloxavir demonstrated a decrease compared to oseltamivir and laninamivir. Conclusions: The NMA suggests that baloxavir demonstrated better or similar efficacy results compared to other antivirals with a comparable safety profile. Baloxavir led to a significant decrease in viral titer versus zanamivir, oseltamivir and peramivir and decreased viral shedding versus zanamivir and oseltamivir.


Subject(s)
Antiviral Agents , Enzyme Inhibitors , Influenza, Human/drug therapy , Neuraminidase/antagonists & inhibitors , Oxazines , Pyridines , Thiepins , Triazines , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Dibenzothiepins , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use , Humans , Morpholines , Network Meta-Analysis , Oxazines/adverse effects , Oxazines/therapeutic use , Pyridines/adverse effects , Pyridines/therapeutic use , Pyridones , Thiepins/adverse effects , Thiepins/therapeutic use , Triazines/adverse effects , Triazines/therapeutic use
9.
J Hazard Mater ; 360: 150-162, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30099358

ABSTRACT

In this work, novel functionalized poly(l-lactide) (F-PLLA) porous fibers were fabricated through electrospinning using the PLLA/methylene chloride (CH2Cl2)/N,N-dimethylformamide (DMF) solution containing diethylenetriamine (DETA) and γ-aminopropyltriethoxysilane (KH-550). The effects of PLLA, DETA and KH-550 contents on the morphologies of the electrospun fibers were systematically investigated, and the results showed that at PLLA, DETA and KH-550 contents of 20% w/v, 2 wt% and 3 wt%, respectively, the electrospun F-PLLA fibers exhibited the homogeneous distribution of fiber diameters and the homogeneous porous structure on the fiber surface. Nitrogen-containing groups were successfully introduced to the electrospun fibers, which induced the great improvement of the hydrophilicity of the membrane surface. Adsorption measurements showed that the electrospun F-PLLA membrane had good adsorption ability toward Congo red (CR), and the adsorption capacity at room temperature was enhanced in 16 times compared with the common PLLA fiber membrane, and the maximum adsorption capacity was 135.7 mg g-1. Furthermore, the adsorption behavior could be well described by the pseudo second-order model. Oil/water separating measurements showed that the electrospun F-PLLA membrane exhibited high separation efficiency and the maximum water fluxes were 2018 and 1861 L m-2 h-1 in separating non-emulsified and emulsified oil/water system under atmospheric pressure, respectively.

10.
Theor Appl Genet ; 131(9): 1851-1860, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29909526

ABSTRACT

KEY MESSAGE: In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Plant Diseases/genetics , Potyvirus , Chromosome Mapping , Genes, Dominant , Genetic Markers , Microsatellite Repeats , Plant Diseases/virology , Polymorphism, Single Nucleotide , Glycine max/virology
11.
Int J Mol Med ; 41(1): 202-212, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29115382

ABSTRACT

Resveratrol (3,5,4-trihydroxystilbene, RES), a natural antioxidant, prevents bone loss by attenuating damage caused by oxidative stress. Our previous research revealed that the forkhead box O1 (FoxO1)/ß-catenin signaling pathway affected the proliferation and differentiation of osteoblasts through its regulation of redox balance, and RES regulated the expression of FoxO1 to control white adipose tissue and then ameliorate an overweight condition. Based on previous research, we hypothesized that RES regulates FoxO1 transcriptional activity through the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway to achieve an antioxidative effect on osteoporosis and then we confirmed this hypothesis in the present study. An ovariectomized (OVX) rat model of osteoporosis and a H2O2­induced oxidative cell injury model in RAW 264.7 cells were established to explore the underlying molecular mechanisms of how RES confers an antioxidant effect and prevents bone loss. The obtained results demonstrated that RES strongly prevented bone loss induced by oxidative stress in vivo. More specifically, RES effectively decreased the receptor activator of nuclear factor-κB ligand (RANKL) together with the tartrate-resistant acid phosphatase­5b (TRAP­5b) level, but elevated the osteoproprotegrin (OPG) level and attenuated bone microarchitecture damage. Notably, RES, due to its antioxidant effect, suppressed RANKL production and then inhibited osteoclastogenesis in the OVX rats. In vitro, RES improved the oxidative stress status of cells and thus inhibited the mRNA expression of osteoclast-specific enzymes. These data indicate that RES has a significant bone protective effect by antagonizing oxidative stress to suppress osteoclast activity, function and formation both in vivo and in vitro. Moreover, at the molecular level, we confirmed, for the first time, that RES upregulated FoxO1 transcriptional activity by inhibiting the PI3K/AKT signaling pathway, and hence promoted resistance to oxidative damage and restrained osteoclastogenesis. Inhibition of the PI3K/AKT signaling pathway may be induced by RANKL. FoxO1 is a major action target of RES to confer anti-osteoporosis function, and whose effect stems from its power to improve redox balance.


Subject(s)
Forkhead Box Protein O1/genetics , Osteoporosis/drug therapy , RANK Ligand/genetics , Stilbenes/administration & dosage , Animals , Cell Differentiation/drug effects , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Hydrogen Peroxide/toxicity , Mice , Osteoclasts/drug effects , Osteoporosis/chemically induced , Osteoporosis/genetics , Osteoprotegerin/genetics , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RAW 264.7 Cells , Resveratrol , Signal Transduction/drug effects
12.
Theor Appl Genet ; 131(2): 253-265, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29038948

ABSTRACT

KEY MESSAGE: The divergence patterns of NBS - LRR genes in soybean Rsv3 locus were deciphered and several divergent alleles ( NBS_C, NBS_D and Columbia NBS_E ) were identified as the likely functional candidates of Rsv3. The soybean Rsv3 locus, which confers resistance to the soybean mosaic virus (SMV), has been previously mapped to a region containing five nucleotide binding site-leucine-rich repeats (NBS-LRR) genes (referred to as nbs_A-E) in Williams 82. In resistant cultivars, however, the number of NBS-LRR genes in this region and their divergence from susceptible alleles remain unclear. In the present study, we constructed and screened a bacterial artificial chromosome (BAC) library for an Rsv3-possessing cultivar, Zaoshu 18. Sequencing two positive BAC inserts on the Rsv3 locus revealed that Zaoshu 18 possesses the same gene content and order as Williams 82, but two of the NBS-LRR genes, NBS_C and NBS_D, exhibit distinct features that were not observed in the Williams 82 alleles. Obtaining these NBS-LRR genes from eight additional cultivars demonstrated that the NBS_A-D genes diverged into two different alleles: the nbs_A-D alleles were associated with the rsv3-type cultivars, whereas the NBS_A-D alleles were associated with the Rsv3-possessing cultivars. For the NBS_E gene, the cultivar Columbia possesses an allele (NBS_E) that differed from that in Zaoshu 18 and rsv3-type cultivars (nbs_E). Exchanged fragments were further detected on alleles of the NBS_C-E genes, suggesting that recombination is a major force responsible for allele divergence. Also, the LRR domains of the NBS_C-E genes exhibited extremely strong signals of positive selection. Overall, the divergence patterns of the NBS-LRR genes in Rsv3 locus elucidated by this study indicate that not only NBS_C but also NBS_D and Columbia NBS_E are likely functional alleles that confer resistance to SMV.


Subject(s)
Disease Resistance/genetics , Glycine max/genetics , Plant Diseases/genetics , Potyvirus , Alleles , Genes, Plant , Plant Diseases/virology , Glycine max/virology
14.
Arch Virol ; 162(3): 901-904, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27909932

ABSTRACT

Soybean mosaic virus (SMV) is a devastating plant virus classified in the family Potyviridae, and known to infect cultivated soybeans (Glycine max). In this study, seven new SMVs were isolated from wild soybean samples and analyzed by whole-genome sequencing. An updated SMV phylogeny was built with the seven new and 83 known SMV genomic sequences. Results showed that three northeastern SMV isolates were distributed in clade III and IV, while four southern SMVs were grouped together in clade II and all contained a recombinant BCMV fragment (~900 bp) in the upstream part of the genome. This work revealed that wild soybeans in China also act as important SMV hosts and play a role in the transmission and diversity of SMVs.


Subject(s)
Genome, Viral , Glycine max/virology , Plant Diseases/virology , Potyvirus/genetics , Base Sequence , China , Molecular Sequence Data , Phylogeny , Potyvirus/classification , Potyvirus/isolation & purification , Viral Proteins/genetics
15.
J Exp Bot ; 67(19): 5757-5768, 2016 10.
Article in English | MEDLINE | ID: mdl-27683728

ABSTRACT

ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction. Furthermore, we found that RID1 interacts with GAMETOPHYTIC FACTOR 1 (GFA1), which is an integral protein of the spliceosome component U5 small nuclear ribonucleoprotein (snRNP) particle. Substitution of specific RID1 amino acids (Y266F and T267I) inhibited the interaction with GFA1. In addition, the mutated RID1 could not complement the seed-abortion phenotype of the rid1 mutant. The rid1 and gfa1 mutants exhibited similar abnormalities in pre-mRNA splicing and down-regulated expression of some genes involved in FG development. Our results suggest that an interaction between RID1 and the U5 snRNP complex regulates essential pre-mRNA splicing of the genes required for FG development. This study provides new information regarding the mechanism underlying the FG developmental process.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Ovule/growth & development , Peptide Elongation Factors/physiology , RNA Helicases/physiology , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Microscopy, Confocal , Ovule/metabolism , Two-Hybrid System Techniques
16.
Theor Appl Genet ; 129(11): 2227-2236, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27544525

ABSTRACT

KEY MESSAGE: The Rsv1 - h gene in cultivar Suweon 97, which confers resistance to SMVs, was mapped to a 97.5-kb location (29,815,195-29,912,667 bp on chromosome 13) in the Rsv1 locus, thereby providing additional insights into the molecular nature underlying variations in resistance alleles in this particular locus. Soybean mosaic virus (SMV) is a well-known devastating pathogen of soybean (Glycine max (L.) Merrill.) causing significant yield losses and seed quality deterioration. A single dominant allele, Rsv1-h, which confers resistance to multiple SMV strains, was previously reported in the cultivar Suweon 97, but its exact location is unknown. In the present study, Suweon 97 was crossed with a SMV-sensitive cultivar, Williams 82. Inoculating 267 F 2 individuals with two Chinese SMV strains (SC6-N and SC7-N) demonstrated that one single dominant gene confers SMV resistance. Another 1,150 F 2 individuals were then screened for two simple sequence repeat (SSR) markers (BARCSOYSSR_13_1103 and BARCSOYSSR_13_1187) that flank the Rsv1 locus. Seventy-four recombinants were identified and 20 additional polymorphic SSR markers within the Rsv1 region were then employed in genotyping these recombinants. F 2:3 and F 3:4 recombinant lines were also inoculated with SC6-N and SC7-N to determine their phenotypes. The final data revealed that in Suweon 97, the Rsv1-h gene that confers resistance to SC6-N and SC7-N was flanked by BARCSOYSSR_13_1114 and BARCSOYSSR_13_1115, two markers that delimit a 97.5-kb region in the reference Williams 82 genome. In such region, eight genes were present, of which two, Glyma13g184800 and Glyma13g184900, encode the characteristic CC-NBS-LRR type of resistance gene and were considered potential candidates for Rsv1-h.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Plant Diseases/genetics , Potyvirus , Crosses, Genetic , DNA, Plant/genetics , Genes, Dominant , Genetic Markers , Microsatellite Repeats , Phenotype , Plant Diseases/virology , Glycine max/virology
17.
Front Plant Sci ; 7: 998, 2016.
Article in English | MEDLINE | ID: mdl-27458476

ABSTRACT

A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny. According to this phylogeny, the plant SHMT gene family can be divided into two groups and four subgroups (Ia, Ib, IIa, and IIb). Belonging to the Subgroup Ia lineage, the rhg4 gene evolved from a recent duplication event in Glycine sp.. To further explore how the SCN-resistant allele emerged, both the rhg4 gene and its closest homolog, the rhg4h gene, were isolated from 33 cultivated and 68 wild soybean varieties. The results suggested that after gene duplication, the soybean rhg4 gene accumulated a higher number of non-synonymous mutations than rhg4h. Although a higher number of segregating sites and gene haplotypes were detected in wild soybeans than in cultivars, the SCN-resistant Rhg4 allele (represented by haplotype 4) was not found in wild varieties. Instead, a very similar allele, haplotype 3, was observed in wild soybeans at a frequency of 7.4%, although it lacked the two critical non-synonymous substitutions. Taken together, these findings support that the SCN-resistant Rhg4 allele likely emerged via artificial selection during the soybean domestication process, based on a SCN-sensitive allele inherited from wild soybeans.

18.
Front Plant Sci ; 7: 429, 2016.
Article in English | MEDLINE | ID: mdl-27066061

ABSTRACT

A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 154: 98-102, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26519916

ABSTRACT

A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λ(max)) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH=2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λ(max) corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL(-1) to 100.0 ng mL(-1) with the correlation coefficient of r=0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL(-1).


Subject(s)
Metal Nanoparticles/chemistry , Serum Albumin, Bovine/analysis , Silver/chemistry , Animals , Cattle , Limit of Detection , Metal Nanoparticles/ultrastructure , Spectrophotometry/methods
20.
Virus Res ; 208: 189-98, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26103098

ABSTRACT

Soybean mosaic virus (SMV) is widely recognized as a highly damaging pathogen of soybean, and various strains/isolates have been reported to date. However, the pathogenic differences and phylogenetic relationships of these SMV strains/isolates have not been extensively studied. In the present work, by first obtaining 18 new genomic sequences of Chinese SMV strains/isolates and further compiling these with available data, we have explored the evolution of SMV from multiple aspects. First, as in other potyviruses, recombination has occurred frequently during SMV evolution, and a total of 32 independent events were detected. Second, using a maximum-likelihood method and removing recombinant fragments, a phylogeny covering 83 SMV sequences sampled from all over the world was reconstructed and the results showed four separate SMV clades, with clade I and II recovered for the first time. Third, the population structure analysis of SMV revealed significant genetic differentiations between China and two other countries (Korea and U.S.A.). Fourth, certain SMV-encoded genes, such as P1, HC-Pro and P3, exhibited higher non-synonymous substitution rate (dN) than synonymous substitution rate (dS), indicating that positive selection has influenced these genes. Finally, four Chinese SMV strains/isolates were selected for inoculation of both USA and Chinese differential soybean cultivars, and their pathogenic phenotypes were significantly different from that of the American strains. Overall, these findings have further broadened our understanding on SMV evolution, which would assist researchers to better deal with this harmful virus.


Subject(s)
Evolution, Molecular , Genome, Viral , Plant Diseases/virology , Potyvirus/genetics , Potyvirus/isolation & purification , China , Genomics , Molecular Sequence Data , Phylogeny , Potyvirus/classification , Republic of Korea , Glycine max/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...