Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 469
Filter
1.
Biodegradation ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844743

ABSTRACT

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).

2.
JCI Insight ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781030

ABSTRACT

Acute Pancreatitis (AP) is among the most common hospital gastrointestinal diagnosis; understanding the mechanisms underlying the severity of AP are critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in two independent genetically engineered mouse models of AP. PFKFB3 is elevated in AP and severe AP (SAP) and knockout of Pfkfb3 abrogates the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies we define the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this dismal condition.

3.
Inorg Chem ; 63(19): 8782-8790, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38691448

ABSTRACT

Potocatalytic hydrogen evolution represnets a promising way to achieve renewable energy sources. Dual heterojunctions with an inverse opal structure are proposed for addressing fundamental challenges (low surface area, inefficient light absorption, and poor charge separation) in photocatalytic water splitting. Inverse opal structure and Co3O4 were introduced to design and synthesize a ZnO/ZnS/Co3O4 (IO-ZnO/ZnS/Co3O4) photocatalyst. Morphology characterizations and photoelectric measurements reveal that the introduction of three-dimensional (3D) structures and dual heterojunctions improves light utilization efficiency and accelerates charge separation, greatly promoting photoelectric performance. The as-prepared IO-ZnO/ZnS/Co3O4 manifests superior photocurrent density (0.49 mA/cm2), which is 4 times higher than that of IO-ZnO/ZnS due to the existence of dual heterojunctions. The result is further confirmed by an enhanced H2 production rate (153.01 µmol/g/h) in pure water. Notably, excellent cycling stability is achieved in pure water because Co3O4 can rapidly capture photogenerated holes to inhibit severe photocorrosion of ZnO/ZnS. Therefore, this work presents a new insight into inhibiting photocorrosion of metal sulfides and promoting their photoelectric performance by combining 3D structures and dual heterojunctions.

4.
Environ Sci Pollut Res Int ; 31(24): 35688-35704, 2024 May.
Article in English | MEDLINE | ID: mdl-38740681

ABSTRACT

In this work, iron-phosphorus based composite biochar (FPBC) was prepared by modification with potassium phosphate and iron oxides for the removal of heavy metal ions from single and mixed heavy metal (Pb and Cd) solutions. FTIR and XPS characterization experiments showed that the novel modified biochar had a greater number of surface functional groups compared to the pristine biochar. The maximum adsorption capacities of FPBC for Pb(II) and Cd(II) were 211.66 mg·g-1 and 94.08 mg·g-1 at 293 K. The adsorption of Pb(II) and Cd(II) by FPBC followed the proposed two-step adsorption kinetic model and the Freundlich isothermal adsorption model, suggesting that the mechanism of adsorption of Pb(II) and Cd(II) by FPBC involved chemical adsorption of multiple layers. Mechanistic studies showed that the introduction of -PO4 and -PO3 chemisorbed with Pb(II) and Cd(II), and the introduction of -Fe-O increased the ion exchange with Pb(II) and Cd(II) during the adsorption process and produced precipitates such as Pb3Fe(PO4)3 and Cd5Fe2(P2O7)4. Additionally, the abundant -OH and -COOH groups also participated in the removal of Pb(II) and Cd(II). In addition, FPBC demonstrated strong selective adsorption of Pb(II) in mixed heavy metal solutions. The Response Surface Methodology(RSM) analysis determined the optimal adsorption conditions for FPBC as pH 5.31, temperature 26.01 °C, and Pb(II) concentration 306.30 mg·L-1 for Pb(II). Similarly, the optimal adsorption conditions for Cd(II) were found to be pH 5.66, temperature 39.34 °C, and Cd(II) concentration 267.68 mg·L-1. Therefore, FPBC has the potential for application as a composite-modified adsorbent for the adsorption of multiple heavy metal ions.


Subject(s)
Cadmium , Charcoal , Lead , Phosphorus , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Cadmium/chemistry , Lead/chemistry , Water Pollutants, Chemical/chemistry , Phosphorus/chemistry , Iron/chemistry , Kinetics , Water Purification/methods , Metals, Heavy/chemistry
6.
Anal Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805056

ABSTRACT

Over the years, a number of state-of-the-art data analysis tools have been developed to provide a comprehensive analysis of data collected from gas chromatography-mass spectrometry (GC-MS). Unfortunately, the time shift problem remains unsolved in these tools. Here, we developed a novel comprehensive data analysis strategy for GC-MS-based untargeted metabolomics (AntDAS-GCMS) to perform total ion chromatogram peak detection, peak resolution, time shift correction, component registration, statistical analysis, and compound identification. Time shift correction was specifically optimized in this work. The information on mass spectra and elution profiles of compounds was used to search for inherent landmarks within analyzed samples to resolve the time shift problem across samples efficiently and accurately. The performance of our AntDAS-GCMS was comprehensively investigated by using four complex GC-MS data sets with various types of time shift problems. Meanwhile, AntDAS-GCMS was compared with advanced GC-MS data analysis tools and classic time shift correction methods. Results indicated that AntDAS-GCMS could achieve the best performance compared to the other methods.

7.
J Gastrointest Surg ; 28(4): 394-401, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583889

ABSTRACT

BACKGROUND: Endoscopic submucosal dissection (ESD) has been recommended as the first-line treatment for early gastric cancer (EGC). However, poor visualization of the operative field increases both the procedure time and the risk of complications, especially for large and difficult lesions. We introduced a novel technique, magnetic anchor-guided ESD (MAG-ESD) and compared it with conventional ESD (C-ESD) for the treatment of large EGCs in terms of efficacy, safety, and advantages. METHODS: Patients with large EGCs who underwent MAG-ESD or C-ESD at the First Affiliated Hospital of Xi'an Jiaotong University from March 2020 to March 2022 were retrospectively enrolled in this study. The patients in the MAG-ESD cohort were matched to those in the C-ESD cohort using propensity score-based matching. The operation time, submucosal dissection time, complete resection status, magnetic anchor, adverse event rate, and tumor recurrence rate were evaluated. RESULTS: Twenty-two patients who underwent MAG-ESD were ultimately matched to those who underwent C-ESD. The median operation time of MAG-ESD and C-ESD was 43 minutes (IQR, 35.2-49.5) and 50.5 minutes (IQR, 42.0-76.0), respectively, among which the submucosal dissection time was 7.6 minutes (IQR, 5.2-10.4) and 14.8 minutes (IQR, 10.8-19.6), respectively. The operation time of MAG-ESD was shorter than that of C-ESD, especially the submucosal dissection time (P < .05). There was a lower incidence of adverse events associated with MAG-ESD (P < .05) when magnetic anchors were successfully placed and retrieved. CONCLUSION: MAG-ESD is feasible, effective, safe, and simple for the treatment of large EGCs at different sites and has a high anchor success rate, which could shorten the operation time and reduce the adverse event rate.


Subject(s)
Endoscopic Mucosal Resection , Stomach Neoplasms , Humans , Retrospective Studies , Endoscopic Mucosal Resection/adverse effects , Endoscopic Mucosal Resection/methods , Cohort Studies , Treatment Outcome , Neoplasm Recurrence, Local , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Magnetic Phenomena
8.
Stem Cell Res Ther ; 15(1): 100, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589882

ABSTRACT

BACKGROUND: Erythroid and myeloid differentiation disorders are commonly occurred in leukemia. Given that the relationship between erythroid and myeloid lineages is still unclear. To find the co-regulators in erythroid and myeloid differentiation might help to find new target for therapy of myeloid leukemia. In hematopoiesis, ALA (alpha lipoic acid) is reported to inhibit neutrophil lineage determination by targeting transcription factor ELK1 in granulocyte-monocyte progenitors via splicing factor SF3B1. However, further exploration is needed to determine whether ELK1 is a common regulatory factor for erythroid and myeloid differentiation. METHODS: In vitro culture of isolated CD34+, CMPs (common myeloid progenitors) and CD34+ CD371- HSPCs (hematopoietic stem progenitor cells) were performed to assay the differentiation potential of monocytes, neutrophils, and erythrocytes. Overexpression lentivirus of long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 transduced CD34+ HSPCs were transplanted into NSG mice to assay the human lymphocyte and myeloid differentiation differences 3 months after transplantation. Knocking down of SRSF11, which was high expressed in CD371+GMPs (granulocyte-monocyte progenitors), upregulated by ALA and binding to ELK1-RNA splicing site, was performed to analyze the function in erythroid differentiation derived from CD34+ CD123mid CD38+ CD371- HPCs (hematopoietic progenitor cells). RNA sequencing of L-ELK1 and S-ELK1 overexpressed CD34+ CD123mid CD38+ CD371- HPCs were performed to assay the signals changed by ELK1. RESULTS: Here, we presented new evidence that ALA promoted erythroid differentiation by targeting the transcription factor ELK1 in CD34+ CD371- hematopoietic stem progenitor cells (HSPCs). Overexpression of either the long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 inhibited erythroid-cell differentiation, but knockdown of ELK1 did not affect erythroid-cell differentiation. RNAseq analysis of CD34+ CD123mid CD38+ CD371- HPCs showed that L-ELK1 upregulated the expression of genes related to neutrophil activity, phosphorylation, and hypoxia signals, while S-ELK1 mainly regulated hypoxia-related signals. However, most of the genes that were upregulated by L-ELK1 were only moderately upregulated by S-ELK1, which might be due to a lack of serum response factor interaction and regulation domains in S-ELK1 compared to L-ELK1. In summary, the differentiation of neutrophils and erythrocytes might need to rely on the dose of L-ELK1 and S-ELK1 to achieve precise regulation via RNA splicing signals at early lineage commitment. CONCLUSIONS: ALA and ELK1 are found to regulate both human granulopoiesis and erythropoiesis via RNA spliceosome, and ALA-ELK1 signal might be the target of human leukemia therapy.


Subject(s)
Leukemia , Thioctic Acid , Humans , Mice , Animals , Erythropoiesis , Neutrophils/metabolism , Interleukin-3 Receptor alpha Subunit , ets-Domain Protein Elk-1/genetics , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Differentiation/genetics , Erythrocytes , Hypoxia , Protein Isoforms
9.
Int J Biol Macromol ; 268(Pt 2): 131735, 2024 May.
Article in English | MEDLINE | ID: mdl-38653424

ABSTRACT

The CMC-PNIPAM hydrogel with semi-interpenetrating structure and temperature-sensitivity was prepared by in-situ polymerization of N-isopropylacrylamide (NIPAM) in sodium carboxymethylcellulose (CMC) solution at room temperature. The mass ratio of CMC to NIPAM was a key factor influencing the network structure and property of CMC-PNIPAM hydrogel. The low critical phase transition temperature (LCST) of CMC-PNIPAM hydrogels increased from 34.4 °C to 35.8 °C with the mass ratio of CMC to NIPAM rising from 0 to 1.2. The maximum compressive stress of CMC-PNIPAM hydrogel reached to 26.7 kPa and the relaxation elasticity was 52 % at strain of 60 %. The viscoelasticity of CMC-PNIPAM hydrogel was consistent with the generalized Maxwell model. The maximum swelling ratio in deionized water was 170.25 g·g-1 (dried hydrogel) with swelling rate of 2.57 g·g-1·min-1 at 25 °C. CMC-PNIPAM hydrogel hardly absorbed water above LCST, but the swollen hydrogel could release water at the rate of 0.36 g·g-1·min-1 once exceeding LCST. The test of water retention showed that soil mixed with 2 wt% dried CMC-PNIPAM hydrogel could retain 13.08 wt% water after 30 days at 25 °C that was 4.4 times than that of controlled soil without CMC-PNIPAM hydrogel. The semi-interpenetrating CMC-PNIPAM hydrogel showed a potential to conserve water responding to temperature.


Subject(s)
Acrylic Resins , Carboxymethylcellulose Sodium , Hydrogels , Temperature , Water , Acrylic Resins/chemistry , Water/chemistry , Hydrogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Phase Transition , Viscosity , Acrylamides/chemistry
11.
Talanta ; 273: 125953, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38521025

ABSTRACT

In this study, we report a new carbazole-malononitrile fluorescent probe CBC with an interesting aggregation-induced emission (AIE) characteristic. Probe CBC could rapidly and selectively detect hydrazine (N2H4) in ~100% aqueous media, and also exhibit an exceedingly low detection limit of 6.3 nM for sensitively detecting N2H4. The sensing mechanism of CBC towards N2H4 has been well demonstrated through the spectra of 1H NMR, HRMS and FTIR. Interestingly, probe CBC was applied to visualize and detect gaseous and aqueous N2H4 with sensitive color changes. Importantly, probe CBC was applied to effectively detect N2H4 in practical samples such as soil, human serum, human urine, plants, foods and beverages, as well as sensitively sense and image N2H4 in biological systems including living mungbean sprouts, Arabidopsis thaliana, and HeLa cells.


Subject(s)
Arabidopsis , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , HeLa Cells , Molecular Imaging/methods , Water/chemistry , Carbazoles , Hydrazines , Spectrometry, Fluorescence/methods
12.
World J Gastroenterol ; 30(7): 728-741, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38515944

ABSTRACT

BACKGROUND: Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvß3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM: To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS: SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 µg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvß3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS: The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION: MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVß3/5.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Glycolipids , Glycoproteins , Lipid Droplets , Pancreatitis , Mice , Animals , Factor VIII , Pancreatitis/chemically induced , Pancreatitis/complications , Acute Disease , Hepatocytes/metabolism , Autophagy , EGF Family of Proteins , Milk Proteins/metabolism , Milk Proteins/pharmacology
13.
Cell Rep ; 43(3): 113945, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483900

ABSTRACT

U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , DEAD Box Protein 58/metabolism , Immunity, Innate , RNA, Small Nuclear , Ubiquitination , Tripartite Motif Proteins/metabolism
14.
Stem Cell Res Ther ; 15(1): 68, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443990

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported. METHODS: Flow cytometric analysis, RNA sequencing and differentiation ability were applied to detect the characteristics of stromal cells from 3D human brain organoids. Human umbilical cord blood CD34+ (UCB-CD34+) cells were cultured in different coculture conditions composed of stromal cells and umbilical cord MSCs (UC-MSCs) with or without a cytokine cocktail. The hematopoietic stroma capacity of stromal cells was tested in vitro with the LTC-IC assay and in vivo by cotransplantation of cord blood nucleated cells and stroma cells into immunodeficient mice. RNA and proteomic sequencing were used to detect the role of MSCs on HSPCs. RESULTS: The stromal cells, derived from both H1-hESCs and human induced pluripotent stem cells forebrain organoids, were capable of differentiating into the classical mesenchymal-derived cells (osteoblasts, chondrocytes, and adipocytes). These cells expressed MSC markers, thus named pluripotent stem cell-derived MSCs (pMSCs). The pMSCs showed neural crest origin with CD271 expression in the early stage. When human UCB-CD34+ HSPCs were cocultured on UC-MSCs or pMSCs, the latter resulted in robust expansion of UCB-CD34+ HSPCs in long-term culture and efficient maintenance of their transplantability. Comparison by RNA sequencing indicated that coculture of human UCB-CD34+ HSPCs with pMSCs provided an improved microenvironment for HSC maintenance. The pMSCs highly expressed the Wnt signaling inhibitors SFRP1 and SFRP2, indicating that they may help to modulate the cell cycle to promote the maintenance of UCB-CD34+ HSPCs by antagonizing Wnt activation. CONCLUSIONS: A novel method for harvesting MSCs with neural crest origin from 3D human brain organoids under serum-free culture conditions was reported. We demonstrate that the pMSCs support human UCB-HSPC expansion in vitro in a long-term culture and the maintenance of their transplantable ability. RNA and proteomic sequencing indicated that pMSCs provided an improved microenvironment for HSC maintenance via mechanisms involving cell-cell contact and secreted factors and suppression of Wnt signaling. This represents a novel method for large-scale production of MSCs of neural crest origin and provides a potential approach for development of human hematopoietic stromal cell therapy for treatment of dyshematopoiesis.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Animals , Mice , Proteomics , Stromal Cells , Antigens, CD34 , Organoids , Prosencephalon , RNA
15.
J Hepatol ; 80(6): 928-940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38336346

ABSTRACT

BACKGROUND & AIMS: Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS: Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS: Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS: SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION: We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.


Subject(s)
Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mice, Knockout , Sex-Determining Region Y Protein , Animals , Male , Female , Mice , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/physiopathology , Humans , Hepatocytes/metabolism , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , Hepatic Stellate Cells/metabolism , Sex Characteristics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/adverse effects , Cholestasis/genetics , Cholestasis/metabolism , Cholestasis/physiopathology , Disease Models, Animal
16.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38198215

ABSTRACT

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Pyrus , Transcription Factors , Xylem , Xylem/metabolism , Xylem/genetics , Pyrus/genetics , Pyrus/metabolism , Pyrus/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics
17.
J Chromatogr A ; 1716: 464653, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38232638

ABSTRACT

The comprehensive study of compound variations in released smoke during the combustion process is a great challenge in many scientific fields related to analytical chemistry like traditional Chinese medicine, environment analysis, food analysis, etc. In this work, we propose a new comprehensive strategy for efficiently and high-thoroughly characterizing compounds in the online released complex smokes: (i) A smoke capture device was designed for efficiently collecting chemical constituents to perform gas chromatography-mass spectrometry (GC-MS) based untargeted analysis. (ii) An advanced data analysis tool, AntDAS-GCMS, was used for automatically extracting compounds in the original acquired GC-MS data files. Additionally, a GC-MS data analysis guided instrumental parameter optimizing strategy was proposed for the optimization of parameters in the smoke capture device. The developed strategy was demonstrated by the study of compound variations in the smoke of traditional Chinese medicine, Artemisia argyi Levl. et Vant. The results indicated that more than 590 components showed significant differences among released smokes of various moxa velvet ratios. Finally, about 88 compounds were identified, of which phenolic compounds were the most abundant, followed by aromatics, alkenes, alcohols and furans. In conclusion, we may provide a novel approach to the studies of compounds in online released smoke.


Subject(s)
Artemisia , Artemisia/chemistry , Medicine, Chinese Traditional , Smoke , Gas Chromatography-Mass Spectrometry/methods
18.
Eur Radiol ; 34(2): 852-862, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37610442

ABSTRACT

OBJECTIVE: To develop a comprehensive nomogram based on MRI intra- and peritumoral radiomics signatures and independent risk factors for predicting parametrial invasion (PMI) in patients with early-stage cervical adenocarcinoma (AC) and adenosquamous carcinoma (ASC). METHODS: A total of 460 patients with IB to IIB cervical AC and ASC who underwent preoperative MRI examination and radical trachelectomy/hysterectomy were retrospectively enrolled and divided into primary, internal validation, and external validation cohorts. The original (Ori) and wavelet (Wav)-transform features were extracted from the volumetric region of interest of the tumour (ROI-T) and 3mm- and 5mm-peritumoral rings (ROI-3 and ROI-5), respectively. Then the Ori and Ori-Wav feature-based radiomics signatures from the tumour (RST) and 3 mm- and 5 mm-peritumoral regions (RS3 and RS5) were independently built and their diagnostic performances were compared to select the optimal ones. Finally, the nomogram was developed by integrating optimal intra- and peritumoral signatures and clinical independent risk factors based on multivariable logistic regression analysis. RESULTS: FIGO stage, disruption of the cervical stromal ring on MRI (DCSRMR), parametrial invasion on MRI (PMIMR), and serum CA-125 were identified as independent risk factors. The nomogram constructed by integrating independent risk factors, Ori-Wav feature-based RST, and RS5 yielded AUCs of 0.874 (0.810-0.922), 0.885 (0.834-0.924), and 0.966 (0.887-0.995) for predicting PMI in the primary, internal and external validation cohorts, respectively. Furthermore, the nomogram was superior to radiomics signatures and clinical model for predicting PMI in three cohorts. CONCLUSION: The nomogram can preoperatively, accurately, and noninvasively predict PMI in patients with early-stage cervical AC and ASC. CLINICAL RELEVANCE STATEMENT: The nomogram can preoperatively, accurately, and noninvasively predict PMI and facilitate precise treatment decisions regarding chemoradiotherapy or radical hysterectomy in patients with early-stage cervical AC and ASC. KEY POINTS: The accurate preoperative prediction of PMI in early-stage cervical AC and ASC can facilitate precise treatment decisions regarding chemoradiotherapy or radical hysterectomy. The nomogram integrating independent risk factors, Ori-Wav feature-based RST, and RS5 can preoperatively, accurately, and noninvasively predict PMI in early-stage cervical AC and ASC. The nomogram was superior to radiomics signatures and clinical model for predicting PMI in early-stage cervical AC and ASC.


Subject(s)
Adenocarcinoma , Carcinoma, Adenosquamous , Uterine Cervical Neoplasms , Humans , Female , Nomograms , Carcinoma, Adenosquamous/diagnostic imaging , Carcinoma, Adenosquamous/pathology , Carcinoma, Adenosquamous/surgery , Retrospective Studies , Radiomics , Magnetic Resonance Imaging , Uterine Cervical Neoplasms/pathology , Adenocarcinoma/pathology
19.
J Magn Reson Imaging ; 59(4): 1394-1406, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37392060

ABSTRACT

BACKGROUND: Deep stromal invasion (DSI) is one of the predominant risk factors that determined the types of radical hysterectomy (RH). Thus, the accurate assessment of DSI in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC) can facilitate optimal therapy decision. PURPOSE: To develop a nomogram to identify DSI in cervical AC/ASC. STUDY TYPE: Retrospective. POPULATION: Six hundred and fifty patients (mean age of 48.2 years) were collected from center 1 (primary cohort, 536), centers 2 and 3 (external validation cohorts 1 and 2, 62 and 52). FIELD STRENGTH/SEQUENCE: 5-T, T2-weighted imaging (T2WI, SE/FSE), diffusion-weighted imaging (DWI, EPI), and contrast-enhanced T1-weighted imaging (CE-T1WI, VIBE/LAVA). ASSESSMENT: The DSI was defined as the outer 1/3 stromal invasion on pathology. The region of interest (ROI) contained the tumor and 3 mm peritumoral area. The ROIs of T2WI, DWI, and CE-T1WI were separately imported into Resnet18 to calculate the DL scores (TDS, DDS, and CDS). The clinical characteristics were retrieved from medical records or MRI data assessment. The clinical model and nomogram were constructed by integrating clinical independent risk factors only and further combining DL scores based on primary cohort and were validated in two external validation cohorts. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, or Chi-squared test were used to compare differences in continuous or categorical variables between DSI-positive and DSI-negative groups. DeLong test was used to compare AU-ROC values of DL scores, clinical model, and nomogram. RESULTS: The nomogram integrating menopause, disruption of cervical stromal ring (DCSRMR), DDS, and TDS achieved AU-ROCs of 0.933, 0.807, and 0.817 in evaluating DSI in primary and external validation cohorts. The nomogram had superior diagnostic ability to clinical model and DL scores in primary cohort (all P < 0.0125 [0.05/4]) and CDS (P = 0.009) in external validation cohort 2. DATA CONCLUSION: The nomogram achieved good performance for evaluating DSI in cervical AC/ASC. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Adenocarcinoma , Carcinoma, Adenosquamous , Deep Learning , Uterine Cervical Neoplasms , Female , Humans , Middle Aged , Nomograms , Carcinoma, Adenosquamous/diagnostic imaging , Carcinoma, Adenosquamous/pathology , Carcinoma, Adenosquamous/therapy , Retrospective Studies , Uterine Cervical Neoplasms/pathology , Magnetic Resonance Imaging/methods , Adenocarcinoma/pathology
20.
Int Wound J ; 21(1): e14395, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37699722

ABSTRACT

To date, we have reviewed the synthesis literature critically through four databases: PubMed, Embase, Cochrane Library and Web of Science. Eight relevant studies were examined after compliance with the criteria for inclusion and exclusion, as well as documentation quality evaluation. This report covered all randomised, controlled studies of total hip arthroplasty (THA) comparing the direct anterior approach (DAA) with the postero-lateral approach (PLA). The main result was surgical site infection rate. The secondary results were duration of the operation, length of the incision and VAS score after surgery. The results of the meta-analyses of wound infections in the present trial did not show any statistically significant difference in DAA versus PLA (between DAA and PLA) (OR = 1.42, 95%CI: 0.5 to 4.04, p = 0.51). Compared with PLA, DAA had shorter surgical incision (WMD = -3.2, 95%CI: -4.00 to -2.41; p < 0.001) and longer operative times(WMD = 14. 67, 95%CI: 9.24 to 20.09; p < 0.001). Postoperative VAS scores were markedly lower in DAA compared with PLA within 6 weeks of surgery (p < 0.05), with low heterogeneities(I2 = 0). We found that DAA did not differ significantly from PLA in terms of the risk of wound infection for THA and that the surgical incisions was shorter and less postoperative pain after surgery, even though DAA surgery takes longer.


Subject(s)
Arthroplasty, Replacement, Hip , Humans , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Pain, Postoperative , Operative Time , Postoperative Period , Polyesters , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...