Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 60(5): 1570-1579, 2023 May.
Article in English | MEDLINE | ID: mdl-37033306

ABSTRACT

A noninvasive and effective viscosity inspection method is expected to ease the burden of continued increased health problems caused by liquid food safety. In this study, we proposed the viscosity of the liquid food micro-environment as a marker and further developed a versatile optical sensor, DPTMDD, for monitoring liquid food micro-environmental viscosity alterations. This sensor was strategically constructed by the triphenylamine-thiophene derivate and michaelitic acid, rotatable conjugate structure was utilized as the recognition site. The molecular sensor was synthesized in a one-step facile way, and DPTMDD displayed a longer emission wavelength (592 nm), low detection limit (1.419 cP), and larger Stokes shift (193.7 nm in glycerol and 177.8 nm in water) with narrower energy band, endowing the sensor with the capacity of achieving high signal-to-noise ratio imaging. Meanwhile, DPTMDD exhibits high adaptability, selectivity, sensitivity, and good photo-stability in various liquid foods, bright fluorescent signal (37.5-fold) of DPTMDD is specifically activated in the high viscosity media. Thickening efficiencies can be identified as well. More importantly, the viscosity fluctuations during the metamorphic stages of liquid foods are also screened through in situ monitoring. We expected that this unique strategy will reinvigorate the continued perfection of liquid food safety investigation systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05699-y.

SELECTION OF CITATIONS
SEARCH DETAIL
...