Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Eur J Med Chem ; 273: 116524, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38795517

ABSTRACT

GSPT1 plays crucial physiological functions, such as terminating protein translation, overexpressed in various tumors. It is a promising anti-tumor target, but is also considered as an "undruggable" protein. Recent studies have found that a class of small molecules can degrade GSPT1 through the "molecular glue" mechanism with strong antitumor activity, which is expected to become a new therapy for hematological malignancies. Currently available GSPT1 degraders are mostly derived from the scaffold of immunomodulatory imide drug (IMiD), thus more active compounds with novel structure remain to be found. In this work, using computer-assisted multi-round virtual screening and bioassay, we identified a non-IMiD acylhydrazone compound, AN5782, which can reduce the protein level of GPST1 and obviously inhibit the proliferation of tumor cells. Some analogs were obtained by a substructure search of AN5782. The structure-activity relationship analysis revealed possible interactions between these compounds and CRBN-GSPT1. Further biological mechanistic studies showed that AN5777 decreased GSPT1 remarkably through the ubiquitin-proteasome system, and its effective cytotoxicity was CRBN- and GSPT1-dependent. Furthermore, AN5777 displayed good antiproliferative activities against U937 and OCI-AML-2 cells, and dose-dependently induced G1 phase arrest and apoptosis. The structure found in this work could be good start for antitumor drug development.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Drug Evaluation, Preclinical , Biological Assay , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Apoptosis/drug effects
2.
Toxicol Res (Camb) ; 13(2): tfae052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567035

ABSTRACT

Objective: Storke is a leading cause of death and disability affecting million people worldwide, 80% of which is ischemic stroke (IS). Recently, traditional Chinese medicines (TCMs) have received great attentions in treating IS due to their low poisonous effects and high safety. Buyang Huanwu Decoction (BHD), a famous and classical Chinese prescription, has been used for treating stroke-induced disability for centuries. Yet, its underlying mechanism is still in fancy. Methods: We first constructed an IS model by middle cerebral artery occlusion (MCAO). Then, a metabonomics study on serum samples was performed using UHPLC-QTOF/MS, followed by multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Results: Metabolic profiling of PCA indicated metabolic perturbation caused by MCAO was regulated by BHD back to normal levels, which is in agreement with the neurobehavioral evaluations. In the OPLS-DA, 12 metabolites were screened as potential biomarkers involved in MCAO-induced IS. Three metabolic pathways were recognized as the most relevant pathways, involving one carbon pool by folate, sphingolipid metabolism and inositol phosphate metabolism. BHD significantly reversed the abnormality of 7 metabolites to normal levels. Conclusions: This is the first study to investigate the effect of BHD on IS at the metabolite level and to reveal the underlying mechanisms of BHD, which is complementary to neurobehavioral evaluation. In a broad sense, the current study brings novel and valuable insights to evaluate efficacy of TCMs, to interpret the action mechanisms, and to provide the theoretical basis for further research on the therapeutic mechanisms in clinical practice.

3.
Br J Pharmacol ; 180(3): 330-346, 2023 02.
Article in English | MEDLINE | ID: mdl-36156794

ABSTRACT

BACKGROUND AND PURPOSE: Triptolide (TP) elicits a beneficial effect in the treatment of autoimmune diseases, such as ulcerative colitis (UC) and rheumatoid arthritis (RA). However, its multiorgan toxicity needs to be resolved. Dendritic cells (DCs) are the primary target of TP, which induces immunosuppression, and DC-derived exosomes (DEX) can selectively enter DCs in vivo. Here, we encapsulated TP with DEX (DEXTP) to generate TP-targeted delivery to reduce toxicity. EXPERIMENTAL APPROACH: The effect of DEXTP was evaluated in murine colitis and RA models. Toxicity was examined by haematoxylin and eosin staining and serum biochemical marker detection. Affinity of DEXs for DCs was tracked by fluorescent labelling. The immune environment was evaluated and mimicked in vitro for further analysis of the mechanism. KEY RESULTS: DEXTP effectively carried TP to DCs in vivo, and alleviated local inflammation and damage in colitis and RA mice with no obvious toxicity. Additionally, DEXTP reshaped the immune milieu by decreasing CD4+ T-cell levels and increasing regulatory T-cell levels in vivo. Furthermore, consistent T-cell differentiation was observed in vitro, and DC activation was inhibited by alterations in surface factors and secrete cytokines, and by induction of apoptosis or other form of death. CONCLUSIONS AND IMPLICATIONS: Encapsulating TP with DEX is a new method that both reduces the toxicity of TP and induces immunosuppression in UC and RA mice. The underlying immune mechanism involves DEXTP targeting DCs in vivo, to inhibit DC activation and induce DC apoptosis, which further induces T-cell immunosuppression.


Subject(s)
Arthritis, Rheumatoid , Colitis , Exosomes , Mice , Animals , Disease Models, Animal , Arthritis, Rheumatoid/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Dendritic Cells
4.
Drug Deliv ; 29(1): 679-691, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35225120

ABSTRACT

Triptolide (TP) exerts a promising effect in the treatment of ulcerative colitis (UC). However, its toxicity seriously hinders its application in the clinic. Previous studies indicated that dendritic cells (DCs) are the main target through which TP exerts its immunoregulatory effect. Thus, we designed an approach to target DCs in vitro to avoid the direct exposure of organs to TP. Our results revealed that DCs pretreated with TP (DCTP) exerted satisfactory therapeutic effects in mice with colitis, resulting in improved colonic inflammation and alleviated local lesion damage. In addition, no obvious toxicity was observed. DCTP also reshaped the immune milieu by decreasing CD4+ T cell numbers and increasing regulatory T cell numbers in the spleen, mesenteric lymph nodes, peripheral blood and colon; these effects were further confirmed in vitro. Downregulation of CD80/86, ICAM-1, MHCI, TLR2/4, TNF-α, and IL-6 expression and upregulation of programmed cell death ligand 1 (PDL1) and IL-10 expression were observed, indicating that DCs were converted into tolerogenic DCs. In conclusion, DCTP can effectively reduce toxicity and alleviate colonic inflammation and local lesion damage in mice with colitis. The immune mechanism underlying the effects of DCTP included the conversion of DCs into tolerogenic DCs and the alteration of T cell differentiation to produce immunoinhibitory rather than immunostimulatory T cells.


Subject(s)
Colitis , Dendritic Cells , Animals , Colitis/chemically induced , Colitis/drug therapy , Disease Models, Animal , Diterpenes , Epoxy Compounds , Mice , Mice, Inbred C57BL , Phenanthrenes
5.
Biomed Chromatogr ; 34(3): e4739, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31692004

ABSTRACT

Allergic rhinitis (AR) negatively affects the healthy lives of many individuals. Most previous studies on AR focused on the expression of cytokines, with only a few analyzing cytokine expression from a metabolomics viewpoint. Therefore, it is worthwhile to study AR at the metabolic level. Consequently, we aimed to identify differential serum biomarkers by metabolomics. In this study, the orthogonal partial least squares discriminant analysis (OPLS-DA) model was applied to characterize the differences in serum samples collected from patients with AR and healthy volunteers. Ten metabolites (except hexadecanoic acid) were found to be altered significantly (p < .05) in the former group, according to results of principal component analysis and OPLS-DA, indicating that these metabolites could be potential biomarkers. MetaboAnalyst 4.0 and pathway enrichment analysis showed that these changes in metabolites mainly involved three pathways, namely, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and purine metabolism. Our findings may contribute to a better understanding of the potential pathogenesis mechanisms and provide a metabolic evidence for in-depth studies of AR.


Subject(s)
Metabolome/physiology , Metabolomics/methods , Rhinitis, Allergic/blood , Rhinitis, Allergic/metabolism , Adult , Biomarkers/blood , Biomarkers/metabolism , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry , Middle Aged
6.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3435-3440, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31602906

ABSTRACT

The aim of this paper was to investigate the anti-inflammatory effect of Tripterygium wilfordii processed with licorice on DSS-induced ulcerative colitis( UC) mice and its regulation on intestinal immune system. In this study,a DSS-induced animal model of UC mice was established,with mesalazine( Mes) as a positive drug. The pharmacodynamic effects of low( PT1) and high( PT2)doses of T. wilfordii processed with licorice were analyzed by disease activity index( DAI),colon length and colon histopathological score in mice. By detecting the expression levels of TNF-α and IL-6 cytokines in the serum of mice,immunohistochemical CD3+T and Fox P3+Treg staining in the colon of mice,the anti-inflammatory and immunoregulatory effects of T. wilfordii processed with licorice on UC mice were analyzed. The hepatotoxicity of each dose of T. wilfordii processed with licorice was also analyzed by HE staining in liver tissue of mice and ALT and AST levels in serum. The results showed that the colitis symptoms of the mice in the PT1 group and the PT2 group were alleviated,the inflammatory cell infiltration was reduced. And the expression of inflammatory factors was decreased,the difference was statistically significant compared with the model group( P<0. 05). The HE staining and ALT and AST levels in the high dose group and low dose group were not significantly different from those in the normal group. The results showed that T. wilfordii processed with licorice has the anti-inflammatory and immunomodulatory effects on UC mice,and the dose did not show significant hepatotoxicity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Glycyrrhiza/chemistry , Tripterygium/chemistry , Animals , Dextran Sulfate , Mice , Plant Extracts/pharmacology
7.
Front Pharmacol ; 10: 1652, 2019.
Article in English | MEDLINE | ID: mdl-32063856

ABSTRACT

Triptolide is beneficial for the treatment of ulcerative colitis (UC), which is closely related to the gut microbiota. However, whether the therapeutic effects of triptolide involve the regulation of the gut microbiota is still unclear. In the present study, animal models of UC mice induced by dextran sodium sulfate (DSS) were established, the changes of gut microbiota in mice were detected by high-throughput sequencing. The effects of triptolide on DSS-induced UC mouse and its gut microbiota were studied. As a result, we found that triptolide exerted anti-inflammatory and therapeutic effects on UC mice. Sequencing results for the gut microbiota showed that the composition of the gut microbiota from DSS group was disordered as compared with that from the control group, consistent with a decrease in the abundance of flora. Triptolide treatment accelerated the recovery of the population of the gut microbiota and significantly improved the microbial diversity. At the phylum level, the population of Bacteroidetes decreased and that of Firmicutes increased. At the genus level, Bacteroides and Lachnospiraceae counts decreased. Thus, triptolide could regulate the composition of the gut microbiota, accelerate the recovery of microbiota, and exert good therapeutic effects in UC mice. Our results also revealed that fecal transplantation from triptolide-treated mice could relieve UC. This study provides a reference for the rational use of triptolide for the treatment of UC.

SELECTION OF CITATIONS
SEARCH DETAIL
...