Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(6): A32-A43, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38437355

ABSTRACT

A pulse laser with a wavelength of 1064 nm and a pulse width of 1 µs was used to experiment on the coating of a 2024 aluminum alloy surface. The removal performance of the pulse laser cleaning coating was explored by a single factor analysis and orthogonally conditions, and the effects of the laser power, scanning speed, and pulse frequency on the quality of laser coating removal were summarized. The mechanisms of pulse laser cleaning the coating were studied. The results show that the three parameters of the laser power, scanning speed, and pulse frequency have different effects on the quality of laser coating removal. Among them, with the increase of the scanning speed and pulse frequency, the quality of laser cleaning first increases and then decreases, respectively. With the increase in laser power, the quality of laser cleaning increases. A good laser cleaning quality can be achieved at the laser power of 16.5 W, a scanning speed of 600 mm/s, and a pulse frequency of 30 kHz. The laser cleaning coating involves a variety of mechanisms such as combustion, explosion, gasification, thermal vibration stripping, and laser plasma impact. The result can provide practical references for a better searching of the paint removal.

2.
J Colloid Interface Sci ; 650(Pt B): 1638-1647, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37494860

ABSTRACT

Transition metal oxides (TMOs) have received significant consideration. Because of their enormous theoretical capacity, cheap, and less toxicity. Notably, cobalt-based materials hold promises as negative electrode materials for batteries, but they suffer from less electrical conductivity and significant volume changes during operation. In order to address these challenges, sacrificial templating techniques at the nanoscale offer a potential solution for improving the electrochemical stability and rate performance of these materials. More specifically, these tactics have proven popular for designing Li-ion storages. To ascertain the impact of multiple metal ions on the electrochemical capacity, metal organic frameworks (MOFs) derived MCo2O4-MOF (M = Zn, Ni, Cu) were developed. Among these, ZnCo2O4 showed the best electrochemical performance (927.2 mAh g-1 at 0.1 A g-1 after 250 cycles). Furthermore, calculations based on density functional theory (DFT) revealed that ZnCo2O4 had the lowest Li+ adsorption energy, with a minimum value of -1.61 eV. Moreover, this research aims to design controllable nanostructures in order to enhance the design of transition bimetallic oxide composites for energy storage applications.

3.
J Colloid Interface Sci ; 625: 425-434, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35724465

ABSTRACT

Lithium­sulfur batteries (LSBs) are gradually replacing conventional lithium-ion batteries (LIBs), credited to their high theoretical capacity, low cost, and non-toxicity. Nevertheless, the substantial capacity degradation caused by the polysulfide shuttling during charging and discharging has seriously hindered the commercialization of LSBs. Separator modification with functionalized carbon materials has been found to catalyze the breakdown of polysulfides, thereby improving the efficiency of LSBs. Herein, we synthesized Ni/Co-PBAs with KB structures to subsequently derive Ni/Co/KB composites by a carbonization process, which were later used as a modifier layer on the barrier in LSBs in order to effectively alleviate the shuttle problem. The capacity of the Ni/Co/KB composite decorated separator is found to be 1032 mAh/g at 0.5 C with a coulombic efficiency closer to 100%. In the long-term cycling capability evaluation, the initial cycle is approximately 802.9 mAh/g at 1 C, while capacity retention after 400 cycles is also 678.8 mAh/g, with a high-capacity retention rate of 84.5%. The potential of these composites as modifying materials for superior LSBs separators is verified by experimental and theoretical methods.

4.
Materials (Basel) ; 15(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35591438

ABSTRACT

Metal magnetic memory testing (MMMT) is an effective nondestructive technique for fatigue damage monitoring of weldments because of its capacity for stress evaluation. An experimental investigation of the effect of the applied fatigue stress on MMMT signals, including the tangential component Bx and the normal component Bz, during tension-compression fatigue tests in welded joints was carried out systematically. The Bx and Bz signals at different fatigue cycles and fatigue stresses were collected and analyzed, and the results showed that there was a peak of Bx and abnormal peaks of Bz that existed at the welded joint before loading. After loading, the peak of Bx and the abnormal peaks of Bz reversed, and the Bx signals moved upward and the Bz signals rotated anticlockwise dramatically in the first few fatigue cycles. After the fatigue cycle number was larger than 1000, Bx and Bz were stable, with very little fluctuation. In addition, the characteristics of Bx signals, the mean value, and the peak value of the average of Bx had an extremely significant linear relationship with the applied fatigue stress during the stable stage of the fatigue test, which indicates that MMMT is a feasible method for fatigue stress evaluation and even residual fatigue life estimation for weldments in service.

5.
Materials (Basel) ; 15(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35269082

ABSTRACT

To investigate atomic oxygen effects on tribological properties of Mo/MoS2-Pb-PbS film and further enlarge application range, atomic oxygen exposure tests were carried out for 5 h, 10 h, 15 h, and 20 h by the atomic oxygen simulator with atomic oxygen flux of 2.5 × 1015 atoms/cm2·s. The exposure time in test was equivalent to the atomic oxygen cumulative flux for 159.25 h, 318.5 h, 477.75 h, and 637 h at the height of 400 km in space. Then, the vacuum friction test of Mo/MoS2-Pb-PbS thin film was performed under the 6 N load and 100 r/min. By SEM, TEM, and XPS analysis of the surface of the film after atomic oxygen erosion, it was observed that atomic oxygen could cause serious oxidation on the surface of Mo/MoS2-Pb-PbS film, and the contents of MoS2, PbS, and Pb, which were lubricating components, were significantly reduced, and oxides were generated. From AES analysis and the variation in the main element content, Mo/MoS2-Pb-PbS thin film showed self-protection ability in an atomic oxygen environment. Hard oxide generated after atomic oxygen erosion such as MoO3 and Pb3O4 could cause the friction coefficient slight fluctuations, but the average friction coefficient was in a stable state.

6.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329515

ABSTRACT

In order to explore the influence of space ultraviolet radiation on spacecraft lubricating materials, an in-situ friction experimental device simulating space ultraviolet radiation was developed in the laboratory, and the experimental verification was carried out. This paper firstly introduced the design index, structure and working principle of the space ultraviolet irradiation simulation device, and then calibrated and tested the parameters of the whole device, and also conducted a virtual operation of the device's operation effect by simulation software, and the results showed that it met the design index. Finally, the validation tested of the ultraviolet irradiated in-situ friction experimental device were described in detail. By using the device to irradiate the samples, it was found that the in-situ ultraviolet irradiation device could achieve the expected irradiation effect, and the irradiation would lead to changes in the surface structure and properties of the PTFE material, while also achieving the need for in-situ spatial friction property testing of the material, providing favorable conditions for future testing.

7.
Dalton Trans ; 50(28): 9669-9684, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34180931

ABSTRACT

In recent years, metal-organic frameworks (MOFs) have been widely used in the field of electrochemical energy storage and conversion because of their excellent properties, such as high specific surface area, adjustable pore size, high porosity, structural diversity, and functional controllability. This paper reviews the applications of metal-organic framework-derived composites such as nitrogen-doped carbon, transition metal sulfides, transition metal selenides, transition metal phosphides and metal selenium compound modifications in potassium ion batteries (PIBs) as anode electrode materials. A variety of MOF-derived composites with different structures and morphologies based on several types of ligands, including 2-methylimidazole, aromatic carboxylic acids, and ferricyanide, have been discussed. Moreover, the current challenges faced by MOF-derived materials and possible countermeasures are proposed.

8.
Nano Lett ; 21(12): 5308-5315, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34076433

ABSTRACT

Friction and wear are the main reasons for decreasing the lifetime of moving mechanical components and causing energy loss. It is desirable to achieve macroscale superlubricity on industrial materials for minimizing friction. Herein, the two-dimensional material black phosphorus (BP) is prepared as an oil-based nanoadditive in oleic acid (OA) and shown to produce macroscale superlubricity at the steel/steel contact under high pressure. Experiments and molecular dynamics simulation reveal that BP quickly captures the carboxylic group and, as a result of the high contact pressure and heat, OA decomposes to release passivating species and recombines to form amorphous carbon giving rise to a composite solid tribofilm with BP. The OA and passivating groups adsorb onto the solid tribofilm to produce the passivating layer, thus resulting in macroscale superlubricity. The findings provide fundamental insight into the nature of tribochemical mechanisms and suggest a new approach to achieve macroscale superlubricity of industrial materials.


Subject(s)
Phosphorus , Steel , Friction
9.
Dalton Trans ; 50(1): 116-123, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33300896

ABSTRACT

Lithium-sulfur (Li-S) batteries have a high specific capacity of 1675 mAh g-1 and are considered to be a promising next-generation energy storage system. A sulfur host for loading Co4N nanoparticles into porous carbon has been designed as the cathode for high-performance Li-S batteries. The porous carbon successfully confines sulfur and Co4N in the pores, and the synergistic effect of physical and chemical adsorption can effectively inhibit the dissolution and diffusion of polysulfides. Besides, the Co4N nanoparticles can also catalyze the redox reaction kinetics. At a current density of 0.5 C, S@KJ-Co4N cathodes deliver a high specific discharge capacity of 958.3 mAh g-1 and retain at 784.0 mAh g-1 after 200 cycles, corresponding to a decay rate of 0.09% per cycle. It is believed that this work can provide a promising strategy for the design of many energy storage systems.

10.
Materials (Basel) ; 12(19)2019 Oct 06.
Article in English | MEDLINE | ID: mdl-31590454

ABSTRACT

The objective of the given work was to investigate abrasive wear behaviours of titanium (Ti) treated by ultrasonic surface rolling processing (USRP) pre-treatment and plasma nitriding (PN). Simulated lunar regolith particles (SLRPs) were employed as abrasive materials during characterization of tribological performances. The experimental results showed that SLRPs cause severe abrasive wear on Ti plasma-nitrided at 750 °C via the mechanism of micro-cutting. Due to the formation of a harder and thicker nitriding layer, the abrasive wear resistance of the Ti plasma-nitrided at 850 °C was enhanced, and its wear mechanism was mainly fatigue. USRP pre-treatment was effective at enhancing the abrasive wear resistance of plasma-nitrided Ti, due to the enhancement of the hardness and thickness of the nitride layer. Nevertheless, SLRPs significantly decreased the friction coefficient of Ti treated by USRP pre-treatment and PN, because the rolling of small granular abrasives impeded the adhesion of the worn surface. Furthermore, USRP pre-treatment also caused the formation of a dimpled surface with a large number of micropores which can hold wear debris during tribo-tests, and finally, polishing and rolling the wear debris resulted in a low friction coefficient (about 0.5).

11.
Proteins ; 66(2): 467-79, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17083088

ABSTRACT

The phenomenon that SARS coronavirus main protease (SARS M(pro)) dimer is the main functional form has been confirmed by experiment. However, because of the absence of structural information of the monomer, the reasons for this remain unknown. To investigate it, two molecular dynamics (MD) simulations in water for dimer and monomer models have been carried out, using the crystal structure of protomer A of the dimer as the starting structure for the monomer. During the MD simulation of dimer, three interest phenomena of protomer A have been observed: (i) the distance between NE2 of His41 and SG of Cys145 averages 3.72 A, which agrees well with the experimental observations made by X-ray crystallography; (ii) His163 and Glu166 form the "tooth" conformational properties, resulting in the specificity for glutamine at substrate P1 site; and (iii) the substrate-binding pocket formed by loop 140-146 and loop 184-197 is large enough to accommodate the substrate analog. However, during the MD simulation of the monomer complex, the three structural characteristics are all absent, which results directly in the inactivation of the monomer. Throughout the MD simulation of the dimer, the N-terminus of protomer B forms stable hydrogen bonds with Phe140 and Glu166, through which His163, Glu166, and loop 140-146 are kept active form. Furthermore, a water-bridge has been found between the N-terminus of protomer B and Gly170, which stabilizes His172 and avoids it moving toward Tyr161 to disrupt the H-bond between Tyr161 and His163, stabilizing the conformation of His163. The interactions between the N-terminus and another monomer maintain the activity of dimer.


Subject(s)
Computer Simulation , Cysteine Endopeptidases/metabolism , Models, Chemical , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Proteins/metabolism , Catalytic Domain , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Dimerization , Hydrogen Bonding , Hydrolysis , Models, Molecular , Protease Inhibitors/pharmacology , Protein Conformation , Protein Interaction Mapping , Structure-Activity Relationship , Substrate Specificity , Viral Proteins/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...