Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Urol ; 24(1): 32, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321455

ABSTRACT

BACKGROUND: USP54, a ubiquitin-specific protease in the deubiquitinase (DUB) family, facilitates the malignant progression of several types of cancer. However, the role of USP54 in prostate cancer (PCa), especially castration-resistant prostate cancer (CRPC), remains unknown. METHODS: We established the CRPC LNCaP-AI cell line from the hormone-sensitive prostate cancer (HSPC) LNCaP cell line. RNA-Seq was utilized to explore DUB expression levels in LNCaP and LNCaP-AI. USP54 was knocked down, and its effects on cell growth were evaluated in vitro and in vivo. Bioinformatics analyses were conducted to explore signaling pathways affected by USP54 in PCa. Quantitative polymerase chain reaction was used to confirm key signaling pathways involved. RESULTS: USP54 was the most strongly upregulated DUB in LNCaP-AI cells compared with LNCaP cells. USP54 levels were higher in PCa than in normal tissues. USP54 silencing suppressed the proliferation of PCa cell lines, both in vitro and in vivo. USP54 expression was positively correlated with the androgen receptor (AR) signaling level in PCa samples, and USP54 knockdown inhibited AR signaling in PCa cells. CONCLUSIONS: USP54 was upregulated during HSPC progression to CRPC. USP54 depletion suppressed CRPC cell proliferation both in vitro and in vivo. USP54 may facilitate PCa progression by regulating AR signaling.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Cell Line, Tumor , Cell Proliferation , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen
2.
Biochem Biophys Res Commun ; 698: 149543, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38266312

ABSTRACT

ANP32B is a histone chaperone that interacts with various transcription factors that regulate cancer cell proliferation, immigration, and apoptosis. c-Myc, a well-known oncogenic protein, is a principal player in the initiation and progression of prostate cancer (PC). The means by which ANP32B and c-Myc act remain unknown. We downloaded clinical data from the GEO, TCGA, and other databases to explore ANP32B expression and its effects on the survival of PC and normal tissues. ANP32B-knockdown cell lines were used to evaluate how ANP32B affected cell proliferation in vitro and in vivo. Gene set enrichment analysis and RNAseq were employed to define how ANP32B regulated PC pathways. Immunohistochemical measures were used to detect the expression levels of relevant proteins in xenografts and PC tissues. ANP32B expression increased in PC tissues; ANP32B knockdown inhibited cell growth but this was rescued by c-Myc signaling. ANP32B is thus a PC oncogene and may serve as a valuable therapeutic target when seeking to treat PC.


Subject(s)
Nuclear Proteins , Prostatic Neoplasms , Proto-Oncogene Proteins c-myc , Humans , Male , Cell Line, Tumor , Cell Proliferation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Animals
3.
Acta Trop ; 241: 106883, 2023 May.
Article in English | MEDLINE | ID: mdl-36870430

ABSTRACT

Toxoplasma gondii, a highly prevalent apicomplexan pathogen, can cause serious or even fatal toxoplasmosis in both animals and humans. Immunoprophylaxis is considered a promising strategy for controlling this disease. Calreticulin (CRT) is known as a pleiotropic protein, which is critical for calcium storage and phagocytosis of apoptotic cells. Our study examined the protective effects of recombinant T. gondii Calreticulin (rTgCRT) as a recombinant subunit vaccine against the T. gondii challenge in mice. Here, rTgCRT was successfully expressed in vitro using prokaryptic expression system. Polyclonal antibody (pAb) has been prepared by immunizing Sprague Dawley rats with rTgCRT. Western blotting showed that rTgCRT and natural TgCRT protein were recognized by serum of T. gondii infected mice and rTgCRT pAb, respectively. T lymphocyte subsets and antibody response were monitored using flow cytometry and enzyme-linked immunosorbent assay (ELISA). The results showed that ISA 201 rTgCRT could stimulate lymphocyte proliferation and induce high levels of total and subclasses of IgG. After the RH strain challenge, a longer survival period was given by the ISA 201 rTgCRT vaccine compared to the control groups; after infection with the PRU strain, we observed a 100% survival rate and a significant reduction in cysts load and size. In the neutralization test, high concentrations of rat-rTgCRT pAb provided 100% protection, while in the passive immunization trial, only weak protection was observed after RH challenge, indicating that rTgCRT pAb needs further modification to improve its activity in vivo. Taken together, these data confirmed that rTgCRT can trigger strong cellular and humoral immune responses against acute and chronic toxoplasmosis.


Subject(s)
Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Humans , Mice , Rats , Animals , Calreticulin/genetics , Calreticulin/pharmacology , Protozoan Proteins , Immunity, Cellular , Rats, Sprague-Dawley , Toxoplasmosis/prevention & control , Recombinant Proteins/genetics , Toxoplasmosis, Animal/prevention & control , Antibodies, Protozoan
4.
J Oncol ; 2022: 9055954, 2022.
Article in English | MEDLINE | ID: mdl-35310915

ABSTRACT

Prostate cancer (PCa) has become a leading cause of cancer-associated incidence and mortality in men worldwide. However, most primary PCas relapse to castration-resistant PCa (CRPC) after androgen deprivation treatment. The current treatment for CRPC is based on chemotherapeutic drugs such as docetaxel, while the development of chemoresistance and severe side effects limit the therapeutic benefit. Solamargine, a natural alkaloid isolated from a traditional Chinese herbal medicine known as Solanum nigrum, exhibits antitumor activity in various human cancers. In this study, we demonstrated that solamargine substantially inhibited CRPC cell growth in a dose-dependent manner through the suppression of phosphoinositide 3-kinase (PI3K)/Akt signaling. Moreover, solamargine exhibited significant antitumor effects in mouse xenograft models. Bioinformatics analysis of docetaxel-resistant PCa cells indicated that the PI3K/Akt pathway mediated the chemoresistance of CRPC. Furthermore, solamargine significantly enhanced the efficacy of docetaxel in PCa cells. These results reveal the therapeutic potential of solamargine against human PCa.

5.
Front Genet ; 13: 1110723, 2022.
Article in English | MEDLINE | ID: mdl-36704352

ABSTRACT

The clinical and molecular phenotypes of prostate cancer (PCa) exhibit substantial heterogeneity, ranging from indolent to metastatic disease. In this study, we aimed to identify PCa subtypes and construct a gene signature that can predict the recurrence-free survival (RFS) of PCa patients based on chromatin regulators genes (CRGs). Strikingly, we identified two heterogeneous subtypes with distinct clinical and molecular characteristics. Furthermore, by performing differential analysis between the two CRGs subtypes, we successfully constructed a gene signature to predict PCa prognosis. The signature, comprising four genes (MXD3, SSTR1, AMH and PPFIA2), was utilized to classify PCa patients into two risk groups; the high-risk group was characterized by poor prognosis and more aggressive clinical features. Moreover, we investigated the immune profile, mutation landscape and molecular pathways in each of the groups. Additionally, drug-susceptibility testing was performed to explore sensitive drugs for high-risk patients. Furthermore, we found that MXD3 downregulation suppressed the proliferation of PCa cell lines in vitro. Overall, our results highlight the signature based on CRGs as a powerful tool for predicting RFS of PCa patients, as well as an indicator for personalized treatment of those patients.

6.
Cancer Cell Int ; 21(1): 430, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399732

ABSTRACT

BACKGROUND: DDX52 is a type of DEAD/H box RNA helicase that was identified as a novel prostate cancer (PCa) genetic locus and possible causal gene in a European large-scale transcriptome-wide association study. However, the functions of DDX52 in PCa remain undetermined. The c-Myc oncogene plays a crucial role in the development of PCa, but the factors that regulate the activity of c-Myc in PCa are still unknown. METHODS: We determined DDX52 protein levels in PCa tissues using immunohistochemistry (IHC). DDX52 expression and survival outcomes in other PCa cohorts were examined using bioinformatics analysis. The inhibition of DDX52 via RNA interference with shRNA was used to clarify the effects of DDX52 on PCa cell growth in vitro and in vivo. Gene set enrichment analysis and RNA sequencing were used to explore the signaling regulated by DDX52 in PCa. Western blotting and IHC were used to determine the possible DDX52 signaling mechanism in PCa. RESULTS: DDX52 expression was upregulated in PCa tissues. Bioinformatics analysis showed that the level of DDX52 further increased in advanced PCa, with a high DDX52 level indicating a poor outcome. In vitro and in vivo experiments showed that downregulating DDX52 impeded the growth of PCa cells. High DDX52 levels contributed to activating c-Myc signaling in PCa patients and PCa cells. Furthermore, DDX52 expression was regulated by c-Myc and positively correlated with c-Myc expression in PCa. CONCLUSION: DDX52 was overexpressed in PCa tissues in contrast to normal prostate tissues. DDX52 knockdown repressed the growth of PCa cells in vitro and in vivo. Deleting c-Myc inhibited DDX52 expression, which affected the activation of c-Myc signaling.

7.
J Exp Clin Cancer Res ; 40(1): 59, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33546726

ABSTRACT

BACKGROUND: c-Myc, a well-established oncogene, plays an important role in the initiation and progression of various cancers, including prostate cancer. However, its mechanism in cancer cell remains largely unknown and whether there exist a deubiquitinase targeting c-Myc also remains elusive. METHODS: Bioinformatic analysis and shRNA screening methods were used to identify potential deubiquitinases that correlate with c-Myc gene signature. Cell proliferation and viability were measured by Cell-Counting-Kit 8 and colony formation assays. A mouse xenograft model of PC3 cells was established to confirm the function of USP16 in vivo. The interaction between USP16 and c-Myc protein was assessed by co-immunoprecipitation and protein co-localization assays. Immunohistochemistry staining was performed to detect the expression of USP16, Ki67, and c-Myc in xenograft tissues and clinical tumour tissues. Furthermore, the correlation between USP16 and c-Myc was confirmed by RNA sequencing. RESULTS: Functional analyses identified USP16, known as a deubiquitinase, was strongly correlated with the c-Myc gene signature. Depletion of USP16 was shown to significantly suppress the growth of PCa cells both in vitro and in vivo. Co-immunoprecipitation and ubiquitination assays confirmed that USP16 served as a novel deubiquitinase of c-Myc and overexpression of c-Myc significantly rescued the effects of USP16 disruption. Immunohistochemistry staining and RNA-seq tactics were further used to confirm the positive correlation between USP16 and c-Myc expression. Expression of USP16 in human PCa tissues was higher than that seen in normal prostate tissues and its high expression was found associated with poor prognosis. CONCLUSIONS: USP16 serves as a novel deubiquitinase of c-Myc. Downregulation of USP16 markedly suppressed PCa cell growth both in vitro and in vivo. USP16 regulates PCa cell proliferation by deubiquitinating and stabilizing c-Myc, making it a potential therapeutic candidate for the treatment of PCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitination/genetics , Animals , Cell Proliferation , Humans , Male , Mice , Mice, Nude , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...