Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Photoacoustics ; 30: 100462, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36865670

ABSTRACT

Simultaneous spatio-temporal description of tumor microvasculature, blood-brain barrier, and immune activity is pivotal to understanding the evolution mechanisms of highly aggressive glioblastoma, one of the most common primary brain tumors in adults. However, the existing intravital imaging modalities are still difficult to achieve it in one step. Here, we present a dual-scale multi-wavelength photoacoustic imaging approach cooperative with/without unique optical dyes to overcome this dilemma. Label-free photoacoustic imaging depicted the multiple heterogeneous features of neovascularization in tumor progression. In combination with classic Evans blue assay, the microelectromechanical system based photoacoustic microscopy enabled dynamic quantification of BBB dysfunction. Concurrently, using self-fabricated targeted protein probe (αCD11b-HSA@A1094) for tumor-associated myeloid cells, unparalleled imaging contrast of cells infiltration associated with tumor progression was visualized by differential photoacoustic imaging in the second near-infrared window at dual scale. Our photoacoustic imaging approach has great potential for tumor-immune microenvironment visualization to systematically reveal the tumor infiltration, heterogeneity, and metastasis in intracranial tumors.

2.
Nat Nanotechnol ; 16(4): 455-465, 2021 04.
Article in English | MEDLINE | ID: mdl-33526836

ABSTRACT

Photodynamic therapy and adipose browning induction are two promising approaches to reverse obesity. The former strategy acts rapidly and locally, whereas the latter has a more gradual and widespread effect. Despite their complementarity, they have rarely been combined and imaged non-invasively in vivo. Here we introduce an adipose-targeting hepatitis B core protein complex that contains a traceable photosensitizer (ZnPcS4 (zinc phthalocyanine tetrasulfonate)) and a browning agent (rosiglitazone) that allows simultaneous photodynamic and browning treatments, with photoacoustic molecular imaging. After intravenous injection in obese mice, the complex binds specifically to white adipose tissues, especially those rich in blood supply, and drives adipose reduction thanks to the synergy of ZnPcS4 photodynamics and rosiglitazone browning. Using photoacoustic molecular imaging, we could monitor the changes induced by the treatment, which included complex activity, lipid catabolism and angiogenesis. Our findings demonstrate the anti-obesity potential of our feedback-based synergic regimen orchestrated by the targeted hepatitis B core complex.


Subject(s)
Adipose Tissue, White/drug effects , Obesity/therapy , Photoacoustic Techniques , Viral Core Proteins/chemistry , Adipose Tissue, White/diagnostic imaging , Adipose Tissue, White/metabolism , Animals , Hepatitis B/genetics , Humans , Indoles/chemistry , Indoles/pharmacology , Mice , Molecular Imaging/methods , Obesity/metabolism , Obesity/pathology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Rosiglitazone/pharmacology , Viral Core Proteins/pharmacology
3.
Cancer Lett ; 496: 169-178, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32987139

ABSTRACT

Nanoparticle-based photothermal ablation (PTA) has been intensively investigated recently. However, the poor biocompatibility of most PTA agents and potential long-term toxicity obstruct their clinical translation. Meanwhile, previous PTA studies are limited to surface tumors because of insufficient light penetration depth of near-infrared (NIR) light for deep abdominal tumors. Therefore, minimally invasive PTA combined with biocompatible agents may pave a promising way to treat deep orthotopic hepatocellular carcinoma (HCC). Herein, a multifunctional agent based on superparamagnetic iron oxide (SPIO) and new indocyanine green (IR820) was constructed with good biocompatibility. Outstanding fluorescence, photoacoustic and magnetic resonance imaging capabilities were observed in vitro. Additionally, in vivo results indicated that early-stage HCC (diameter less than 2 mm) could be effectively detected by this agent. Furthermore, for the first time, we developed minimally invasive laparoscopic-assisted photothermal ablation (L-A PTA) method coupled with this agent to completely ablate orthotopic HCC in nude mice model, neither recurrences nor obvious side effects were observed during the experiments. Remarkable shrinkage of primary tumor and disappearance of intrahepatic metastasis were also observed. In summary, minimally invasive L-A PTA is an effective preoperative neoadjuvant treatment for HCC.


Subject(s)
Carcinoma, Hepatocellular/therapy , Laparoscopy/methods , Liver Neoplasms/therapy , Minimally Invasive Surgical Procedures/methods , Neoadjuvant Therapy/methods , Photothermal Therapy/methods , Preoperative Care , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Biomater Sci ; 8(15): 4322-4333, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32602480

ABSTRACT

Early diagnosis and therapy of hepatocellular carcinoma (HCC) is critical to improve the five-year survival rates of patients. Theranostic agents synergized with photothermal ablation are expected to realize the early detection and treatment of orthotopic HCC. However, conventional metallic nanoagents are limited by their potential bio-toxicity to surrounding normal organs. Recently, endogenous biological melanin pigments have been utilized to develop nanoplatforms due to their excellent biocompatibility and degradability. Whereas, the insufficient capability of PEGylated melanin nanoparticles (PEG-MNPs) in photoacoustic (PA) imaging limits their further biomedical applications. Paradoxically, it is difficult to meet these two different requirements. Herein, a multifunctional nanoagent based on melanin (MNPs) conjugating the near-infrared (NIR) dye IR820 was successfully designed and fabricated. Encapsulation by polyethylene glycol (PEG) renders the solubility in water and allows the physical absorption of IR820 for enhanced photoacoustic (PA) performance and photothermal therapy. Besides, PEG coating on the surface of IR820-PEG-MNPs resulted in a reduction in swallowing in the reticuloendothelial system of the liver and spleen, prolonging the circulation time in the blood and increasing the accumulation in the tumor. The IR820-PEG-MNPs displayed satisfactory PA and T1-weighted magnetic resonance imaging (MRI) signals in aqueous solution as well as strong photothermal efficiency. Compared with prior injection, PA/MR signals of the tumor region were enhanced by 4.13- and 1.60-fold, respectively, which could effectively detect lesions smaller than ∼1.8 mm. Furthermore, the high photothermal conversion efficiency (40.2%) endowed the IR820-PEG-MNPs with the capability of selectively ablating tumors in orthotopic HCC mouse models under the guidance of PA/MR imaging. This work broadens the biomedical applications of melanin-based agent, which are promising for the precise diagnosis of orthotopic micro HCC and imaging guided photothermal ablation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Photoacoustic Techniques , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Melanins , Mice , Precision Medicine , Theranostic Nanomedicine
5.
Theranostics ; 10(2): 816-828, 2020.
Article in English | MEDLINE | ID: mdl-31903152

ABSTRACT

Ischemic stroke (IS) is one of the leading causes of death and accounts for 85% of stroke cases. Since the symptoms are not obvious, diagnosis of IS, particularly at an early stage, is a great challenge. Photoacoustic imaging combines high sensitivity of optical imaging and fine resolution of ultrasonography to non-invasively provide structural and functional information of IS. Methods: We adopted three rapid photoacoustic imaging systems with varying characteristics, including a portable handheld photoacoustic system, high-sensitivity bowl-shaped array photoacoustic computed tomography (PACT), and high-resolution photoacoustic microscopy (PAM) to assess the stereoscopic and comprehensive pathophysiological status of IS at an early stage. Two representative models of IS, referring to photothrombosis and middle cerebral artery occlusion (MCAO) models, were established to verify the feasibility of photoacoustic imaging detection. Results: Non-invasive, rapid PACT of the IS model in mouse provided structural information of the brain lesion, achieving early disease identification (5 min after the onset of disease). Moreover, it was able to dynamically reflect disease progression. Quantitative high-resolution PAM allowed observation of pathological changes in the microvascular system of mouse brain. In terms of functional imaging, significant differences in oxygen saturation (sO2) levels between infarcted and normal areas could be observed by PACT, permitting effective functional parameters for the diagnosis of IS. Conclusions: We used PACT to perform full-view structural imaging and functional imaging of sO2 in IS at the macroscopic level, and then observed the microvascular changes in the infarcted area at the microscopic level by using PAM. This work may provide new tools for the early diagnosis of IS and its subsequent complications as well as assessment of disease progression.


Subject(s)
Brain Ischemia/pathology , Ischemic Stroke/pathology , Microvessels/pathology , Optical Imaging/methods , Photoacoustic Techniques/methods , Animals , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Early Diagnosis , Ischemic Stroke/diagnostic imaging , Male , Mice , Mice, Nude , Microvessels/diagnostic imaging , Oxygen/metabolism
6.
Biomed Opt Express ; 10(7): 3425-3433, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31467787

ABSTRACT

Accurate diagnoses of superficial and deep dermal burns are difficult to make even by experienced investigators due to slight differences in dermis damage. Many imaging technologies have been developed to improve the burn depth assessment. But these imaging tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid modality combining optical and ultrasound imaging that remains high resolution in deep imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional and volumetric images of the burn region. High-resolution PAM allowed for imaging of angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess the difference between the two damage degrees of burn injuries. Our proposed method suggests an effective tool to diagnose and monitor burn injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...