Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Cell Death Differ ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867004

ABSTRACT

Cancer cells rely on metabolic reprogramming to sustain the prodigious energetic requirements for rapid growth and proliferation. Glutamine metabolism is frequently dysregulated in cancers and is being exploited as a potential therapeutic target. Using CRISPR/Cas9 interference (CRISPRi) screening, we identified TARBP1 (TAR (HIV-1) RNA Binding Protein 1) as a critical regulator involved in glutamine reliance of cancer cell. Consistent with this discovery, TARBP1 amplification and overexpression are frequently observed in various cancers. Knockout of TARBP1 significantly suppresses cell proliferation, colony formation and xenograft tumor growth. Mechanistically, TARBP1 selectively methylates and stabilizes a small subset of tRNAs, which promotes efficient protein synthesis of glutamine transporter-ASCT2 (also known as SLC1A5) and glutamine import to fuel the growth of cancer cell. Moreover, we found that the gene expression of TARBP1 and ASCT2 are upregulated in combination in clinical cohorts and their upregulation is associated with unfavorable prognosis of HCC (hepatocellular carcinoma). Taken together, this study reveals the unexpected role of TARBP1 in coordinating the tRNA availability and glutamine uptake during HCC progression and provides a potential target for tumor therapy.

2.
Nat Commun ; 13(1): 5192, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057627

ABSTRACT

Dynamic regulation of intestinal epithelial cell (IEC) differentiation is crucial for both homeostasis and the response to helminth infection. SIRT6 belongs to the NAD+-dependent deacetylases and has established diverse roles in aging, metabolism and disease. Here, we report that IEC Sirt6 deletion leads to impaired tuft cell development and type 2 immunity in response to helminth infection, thereby resulting in compromised worm expulsion. Conversely, after helminth infection, IEC SIRT6 transgenic mice exhibit enhanced epithelial remodeling process and more efficient worm clearance. Mechanistically, Sirt6 ablation causes elevated Socs3 expression, and subsequently attenuated tyrosine 641 phosphorylation of STAT6 in IECs. Notably, intestinal epithelial overexpression of constitutively activated STAT6 (STAT6vt) in mice is sufficient to induce the expansion of tuft and goblet cell linage. Furthermore, epithelial STAT6vt overexpression remarkedly reverses the defects in intestinal epithelial remodeling caused by Sirt6 ablation. Our results reveal a novel function of SIRT6 in regulating intestinal epithelial remodeling and mucosal type 2 immunity in response to helminth infection.


Subject(s)
Helminthiasis/immunology , Intestinal Mucosa , STAT6 Transcription Factor/metabolism , Sirtuins/metabolism , Animals , Epithelial Cells/metabolism , Goblet Cells/metabolism , Helminthiasis/metabolism , Immunity, Mucosal , Intestinal Mucosa/metabolism , Intestines , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT6 Transcription Factor/genetics , Sirtuins/genetics
3.
Biochem Biophys Res Commun ; 625: 31-37, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35944361

ABSTRACT

Dilated cardiomyopathy, a type of heart muscle disease defined by the presence of left ventricular dilatation and contractile dysfunction, is an important cause of sudden cardiac death and heart failure. O-GlcNAcylation is an important post-translational modification of proteins by the addition of O-GlcNAc moieties at serine or threonine residues. Several studies have shown that proper control of O-GlcNAcylation is required for maintaining physiological function of heart by using Ogt (O-GlcNAc transferase) cardiomyocyte-specific knockout mouse models. In this study, we generated a new mouse model (αSMA-Ogt KO) in which Ogt was deleted in both cardiomyocytes and smooth muscle cells by crossing Ogt floxed mice with αSMA-Cre mice. αSMA-Cre-mediated Ogt deletion in mice led to severe postnatal lethality; the survived mice were smaller than control mice, had dilated hearts, and showed observable signs of heart failure. Moreover, the αSMA-Ogt KO heart had more apoptotic cells and fibrosis. The arteries of αSMA-Ogt KO mice exhibited significantly reduced expression of contractile genes and a trend towards arterial stiffness. In conclusion, our data emphasize the importance of OGT in maintaining normal heart function and reveal a novel role of OGT in regulating arterial contractility.


Subject(s)
Heart Failure , Muscle, Smooth, Vascular , Animals , Heart Failure/genetics , Heart Failure/metabolism , Integrases , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Smooth Muscle/metabolism , N-Acetylglucosaminyltransferases/metabolism
4.
Nat Commun ; 13(1): 4433, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907876

ABSTRACT

Kinase-catalyzed phosphorylation plays a crucial role in pathological cardiac hypertrophy. Here, we show that CDC-like kinase 4 (CLK4) is a critical regulator of cardiomyocyte hypertrophy and heart failure. Knockdown of Clk4 leads to pathological cardiomyocyte hypertrophy, while overexpression of Clk4 confers resistance to phenylephrine-induced cardiomyocyte hypertrophy. Cardiac-specific Clk4-knockout mice manifest pathological myocardial hypertrophy with progressive left ventricular systolic dysfunction and heart dilation. Further investigation identifies nexilin (NEXN) as the direct substrate of CLK4, and overexpression of a phosphorylation-mimic mutant of NEXN is sufficient to reverse the hypertrophic growth of cardiomyocytes induced by Clk4 knockdown. Importantly, restoring phosphorylation of NEXN ameliorates myocardial hypertrophy in mice with cardiac-specific Clk4 deletion. We conclude that CLK4 regulates cardiac function through phosphorylation of NEXN, and its deficiency may lead to pathological cardiac hypertrophy. CLK4 is a potential intervention target for the prevention and treatment of heart failure.


Subject(s)
Cardiomegaly , Heart Failure , Animals , Cardiomegaly/pathology , Disease Models, Animal , Heart Failure/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases
5.
J Am Chem Soc ; 144(3): 1323-1331, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35037455

ABSTRACT

As an aberrant base in DNA, uracil is generated by either deoxyuridine (dU) misincorporation or cytosine deamination, and involved in multiple physiological and pathological processes. Genome-wide profiles of uracil are important for study of these processes. Current methods for whole-genome mapping of uracil all rely on uracil-DNA N-glycosylase (UNG) and are limited in resolution, specificity, and/or sensitivity. Here, we developed a UdgX cross-linking and polymerase stalling sequencing ("Ucaps-seq") method to detect dU at single-nucleotide resolution. First, the specificity of Ucaps-seq was confirmed on synthetic DNA. Then the effectiveness of the approach was verified on two genomes from different sources. Ucaps-seq not only identified the enrichment of dU at dT sites in pemetrexed-treated cancer cells with globally elevated uracil but also detected dU at dC sites within the "WRC" motif in activated B cells which have increased dU in specific regions. Finally, Ucaps-seq was utilized to detect dU introduced by the cytosine base editor (nCas9-APOBEC) and identified a novel off-target site in cellular context. In conclusion, Ucaps-seq is a powerful tool with many potential applications, especially in evaluation of base editing fidelity.


Subject(s)
Nucleotides
6.
Cell Prolif ; 55(1): e13164, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34850470

ABSTRACT

OBJECTIVES: Accumulating evidences show that the regulatory network of m6 A modification is essential for mammalian spermatogenesis. However, as an m6 A reader, the roles of YTHDF2 remain enigmatic due to the lack of a proper model. Here, we employed the germ cell conditional knockout mouse model and explored the function of YTHDF2 in spermatogenesis. MATERIALS AND METHODS: Ythdf2 germ cell conditional knockout mice were obtained by crossing Ythdf2-floxed mice with Vasa-Cre and Stra8-Cre mice. Haematoxylin and eosin (HE) staining, immunofluorescent staining and Western blotting were used for phenotyping. CASA, IVF and ICSI were applied for sperm function analysis. RNA-seq, YTHDF2-RIP-seq and quantitative real-time PCR were used to explore transcriptome changes and molecular mechanism analysis. RESULTS: Our results showed that YTHDF2 was highly expressed in spermatogenic cells. The germ cell conditional knockout males were sterile, and their sperm displayed malformation, impaired motility, and lost fertilization ability. During differentiated spermatogonia transiting to pachytene spermatocyte, most m6 A-modified YTHDF2 targets that were degraded in control germ cells persisted in pachytene spermatocytes of Ythdf2-vKO mice. These delayed mRNAs were mainly enriched in pathways related to the regulation of transcription, and disturbed the transcriptome of round spermatid and elongated spermatid subsequently. CONCLUSION: Our data demonstrate that YTHDF2 facilitates the timely turnover of phase-specific transcripts to ensure the proper progression of spermatogenesis, which highlights a critical role of YTHDF2 in spermatogenesis.


Subject(s)
Adenosine/analogs & derivatives , RNA-Binding Proteins/metabolism , Spermatogenesis/genetics , Adenosine/metabolism , Animals , Fertility , Fertilization , Gene Deletion , Germ Cells/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Spermatozoa/metabolism , Spermatozoa/pathology , Transcriptome/genetics
7.
J Cell Mol Med ; 25(23): 10879-10891, 2021 12.
Article in English | MEDLINE | ID: mdl-34716659

ABSTRACT

N6 -methyladenosine (m6 A) is the most prevalent modification in mRNA and engages in multiple biological processes. Previous studies indicated that m6 A methyltransferase METTL3 ('writer') and demethylase FTO ('eraser') play critical roles in heart-related disease. However, in the heart, the function of m6 A 'reader', such as YTH (YT521-B homology) domain-containing proteins remains unclear. Here, we report that the defect in YTHDC1 but not other YTH family members contributes to dilated cardiomyopathy (DCM) in mice. Cardiac-specific conditional Ythdc1 knockout led to obvious left ventricular chamber enlargement and severe systolic dysfunction. YTHDC1 deficiency also resulted in the decrease of cardiomyocyte contractility and disordered sarcomere arrangement. By means of integrating multiple high-throughput sequence technologies, including m6 A-MeRIP, RIP-seq and mRNA-seq, we identified 42 transcripts as potential downstream targets of YTHDC1. Amongst them, we found that Titin mRNA was decorated with m6 A modification and depletion of YTHDC1 resulted in aberrant splicing of Titin. Our study suggests that Ythdc1 plays crucial role in regulating the normal contractile function and the development of DCM. These findings clarify the essential role of m6 A reader in cardiac biofunction and provide a novel potential target for the treatment of DCM.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Methyltransferases/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinases/metabolism , RNA Splicing Factors/metabolism , Adenosine/metabolism , Animals , Connectin/metabolism , Male , Mice , RNA-Binding Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism
8.
Biochem Biophys Res Commun ; 578: 142-149, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34562654

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) acts as a central regulator of metabolic pathways that drive cellular growth. Abnormal activation of mTORC1 occurs at high frequency in human and mouse hepatocellular carcinoma (HCC). DEP domain-containing protein 5 (DEPDC5), a component of GATOR1 complex, is a repressor of amino acid-sensing branch of the mTORC1 pathway. In the current study, we found that persistent activation of hepatic mTORC1 signaling caused by Depdc5 ablation was sufficient to induce a pathological program of liver damage, inflammation and fibrosis that triggers spontaneous HCC development. Take advantage of the combinatory treatment with a single dose of diethylnitrosamine (DEN) and chronic feeding with high-fat diet (HFD), we demonstrated that hepatic depdc5 deletion did not aggravate DEN&HFD induced liver tumorigenesis, probably due to its protective effects on diet-induced liver steatosis. In addition, we further showed that chronic rapamycin treatment did not have any apparent tumor-suppressing effects on DEN&HFD treated control mice, whereas it dramatically reduced the tumor burden in mice with hepatic Depdc5 ablation. This study provides the novel in vivo evidence for Depdc5 deletion mediated mTORC1 hyperactivation in liver tumorigenesis caused by aging or DEN&HFD treatment. Moreover, our findings also propose that pharmacological inhibition of mTORC1 signaling maybe a promising strategy to treat HCC patients with mutations in DEPDC5 gene.


Subject(s)
Carcinoma, Hepatocellular/pathology , Diet, High-Fat , Diethylnitrosamine/toxicity , Fatty Liver/pathology , GTPase-Activating Proteins/physiology , Liver/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Alkylating Agents/toxicity , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Proliferation , Disease Models, Animal , Fatty Liver/chemically induced , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Inflammation/immunology , Inflammation/metabolism , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Tumor Burden
9.
J Am Chem Soc ; 143(29): 10902-10909, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34254797

ABSTRACT

The asymmetric hydroboration of alkenes has proven to be among the most powerful methods for the synthesis of chiral boron compounds. This protocol is well suitable for activated alkenes such as vinylarenes and alkenes bearing directing groups. However, the catalytic enantioselective hydroboration of O-substituted alkenes has remained unprecedented. Here we report a Rh-catalyzed enantioselective hydroboration of silyl enol ethers (SEEs) that utilizes two new chiral phosphine ligands we developed. This approach features mild reaction conditions and a broad substrate scope as well as excellent functional group tolerance, and enables highly efficient preparation of synthetically valuable chiral borylethers.

10.
Biochem Biophys Res Commun ; 569: 118-124, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34243067

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) is a crucial regulator of adipogenesis and systemic energy metabolism. Its dysregulation leads to a diversity of metabolic diseases, including obesity and type 2 diabetes. DEP-domain containing 5 (DEPDC5) is a critical component of GATOR1 complex that functions as a key inhibitor of mTORC1. So far, its function in adipose tissue remains largely unknown. Herein we evaluated how persistent mTORC1 activation in adipocyte via Depdc5 knockout modulates adiposity in vivo. Our data indicated that adipocyte-specific knockout of Depdc5 in aged mice led to reduced visceral fat, aggravated insulin resistance and enhanced adipose tissue inflammation. Moreover, we found that Depdc5 ablation resulted in upregulation of adipose triglyceride lipase (ATGL) in adipocytes and elevated levels of serum free fatty acids (FFAs). Intriguingly, rapamycin treatment did not reverse insulin resistance but alleviated adipose tissue inflammation caused by Depdc5 deletion. Taken together, our findings revealed that mTORC1 activation caused by Depdc5 deletion promotes lipolysis process and further exacerbates insulin resistance and adipose tissue inflammation in mice.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , GTPase-Activating Proteins/genetics , Inflammation/genetics , Insulin Resistance/genetics , Adipogenesis/genetics , Adipose Tissue/pathology , Age Factors , Animals , Blotting, Western , Diet, High-Fat/adverse effects , GTPase-Activating Proteins/deficiency , Inflammation/metabolism , Intra-Abdominal Fat/metabolism , Lipase/genetics , Lipase/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout , Mice, Transgenic , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
11.
Hum Mol Genet ; 30(22): 2110-2122, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34196368

ABSTRACT

The well-established functions of UHRF1 converge to DNA biological processes, as exemplified by DNA methylation maintenance and DNA damage repair during cell cycles. However, the potential effect of UHRF1 on RNA metabolism is largely unexplored. Here, we revealed that UHRF1 serves as a novel alternative RNA splicing regulator. The protein interactome of UHRF1 identified various splicing factors. Among them, SF3B3 could interact with UHRF1 directly and participate in UHRF1-regulated alternative splicing events. Furthermore, we interrogated the RNA interactome of UHRF1, and surprisingly, we identified U snRNAs, the canonical spliceosome components, in the purified UHRF1 complex. Unexpectedly, we found H3R2 methylation status determines the binding preference of U snRNAs, especially U2 snRNAs. The involvement of U snRNAs in UHRF1-containing complex and their binding preference to specific chromatin configuration imply a finely orchestrated mechanism at play. Our results provided the resources and pinpointed the molecular basis of UHRF1-mediated alternative RNA splicing, which will help us better our understanding of the physiological and pathological roles of UHRF1 in disease development.


Subject(s)
Alternative Splicing , CCAAT-Enhancer-Binding Proteins/metabolism , Histones/metabolism , RNA Splicing Factors/metabolism , RNA, Small Nuclear/genetics , Ubiquitin-Protein Ligases/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Humans , Methylation , Multiprotein Complexes , Nucleic Acid Conformation , Protein Binding , RNA, Small Nuclear/metabolism , Ubiquitin-Protein Ligases/genetics
12.
Pharmacol Res ; 169: 105642, 2021 07.
Article in English | MEDLINE | ID: mdl-33933636

ABSTRACT

Anthracyclines including doxorubicin (DOX) are still the most widely used and efficacious antitumor drugs, although their cardiotoxicity is a significant cause of heart failure. Despite considerable efforts being made to minimize anthracycline-induced cardiac adverse effects, little progress has been achieved. In this study, we aimed to explore the role and underlying mechanism of SNX17 in DOX-induced cardiotoxicity. We found that SNX17 was downregulated in cardiomyocytes treated with DOX both in vitro and in vivo. DOX treatment combined with SNX17 interference worsened the damage to neonatal rat ventricular myocytes (NRVMs). Furthermore, the rats with SNX17 deficiency manifested increased susceptibility to DOX-induced cardiotoxicity (myocardial damage and fibrosis, impaired contractility and cardiac death). Mechanistic investigation revealed that SNX17 interacted with leiomodin-2 (LMOD2), a key regulator of the thin filament length in muscles, via its C-TERM domain and SNX17 deficiency exacerbated DOX-induced cardiac systolic dysfunction by promoting aberrant LMOD2 degradation through lysosomal pathway. In conclusion, these findings highlight that SNX17 plays a protective role in DOX-induced cardiotoxicity, which provides an attractive target for the prevention and treatment of anthracycline induced cardiotoxicity.


Subject(s)
Cardiotoxins/toxicity , Doxorubicin/toxicity , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/drug effects , Sorting Nexins/metabolism , Animals , Blotting, Western , Cardiotoxins/antagonists & inhibitors , Doxorubicin/antagonists & inhibitors , Fluorescent Antibody Technique , HEK293 Cells , Humans , Immunoprecipitation , Male , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Sorting Nexins/physiology
13.
Protein Cell ; 12(7): 545-556, 2021 07.
Article in English | MEDLINE | ID: mdl-33548033

ABSTRACT

Activation of the heart normally begins in the sinoatrial node (SAN). Electrical impulses spontaneously released by SAN pacemaker cells (SANPCs) trigger the contraction of the heart. However, the cellular nature of SANPCs remains controversial. Here, we report that SANPCs exhibit glutamatergic neuron-like properties. By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse, we found that SANPCs co-clustered with cortical neurons. Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system, expressing genes encoding glutamate synthesis pathway (Gls), ionotropic and metabotropic glutamate receptors (Grina, Gria3, Grm1 and Grm5), and glutamate transporters (Slc17a7). SANPCs highly expressed cell markers of glutamatergic neurons (Snap25 and Slc17a7), whereas Gad1, a marker of GABAergic neurons, was negative. Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+ transients frequency in single SANPC. Collectively, our work suggests that SANPCs share dominant biological properties with glutamatergic neurons, and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm, which provides a potential intervention target for pacemaker cell-associated arrhythmias.


Subject(s)
Biological Clocks/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , Primary Visual Cortex/metabolism , Sinoatrial Node/metabolism , Transcriptome , Action Potentials/physiology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Calcium/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Glutamic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/metabolism , Neurons/cytology , Primary Visual Cortex/cytology , Receptors, Ionotropic Glutamate/classification , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/classification , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Single-Cell Analysis , Sinoatrial Node/cytology , Tissue Culture Techniques , gamma-Aminobutyric Acid/metabolism
14.
Nature ; 591(7849): 317-321, 2021 03.
Article in English | MEDLINE | ID: mdl-33505026

ABSTRACT

METTL3 (methyltransferase-like 3) mediates the N6-methyladenosine (m6A) methylation of mRNA, which affects the stability of mRNA and its translation into protein1. METTL3 also binds chromatin2-4, but the role of METTL3 and m6A methylation in chromatin is not fully understood. Here we show that METTL3 regulates mouse embryonic stem-cell heterochromatin, the integrity of which is critical for silencing retroviral elements and for mammalian development5. METTL3 predominantly localizes to the intracisternal A particle (IAP)-type family of endogenous retroviruses. Knockout of Mettl3 impairs the deposition of multiple heterochromatin marks onto METTL3-targeted IAPs, and upregulates IAP transcription, suggesting that METTL3 is important for the integrity of IAP heterochromatin. We provide further evidence that RNA transcripts derived from METTL3-bound IAPs are associated with chromatin and are m6A-methylated. These m6A-marked transcripts are bound by the m6A reader YTHDC1, which interacts with METTL3 and in turn promotes the association of METTL3 with chromatin. METTL3 also interacts physically with the histone 3 lysine 9 (H3K9) tri-methyltransferase SETDB1 and its cofactor TRIM28, and is important for their localization to IAPs. Our findings demonstrate that METTL3-catalysed m6A modification of RNA is important for the integrity of IAP heterochromatin in mouse embryonic stem cells, revealing a mechanism of heterochromatin regulation in mammals.


Subject(s)
Chromatin Assembly and Disassembly , Heterochromatin/genetics , Heterochromatin/metabolism , Methyltransferases/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Endogenous Retroviruses/genetics , Gene Expression Regulation , Genes, Intracisternal A-Particle/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Mice , Tripartite Motif-Containing Protein 28/metabolism
15.
Cell Rep ; 33(12): 108544, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357433

ABSTRACT

N6 methylation at adenosine 1832 (m6A1832) of mammalian 18S rRNA, occupying a critical position within the decoding center, is modified by a conserved methyltransferase, METTL5. Here, we find that METTL5 shows strong substrate preference toward the 18S A1832 motif but not the other reported m6A motifs. Comparison with a yeast ribosome structural model unmodified at this site indicates that the modification may facilitate mRNA binding by inducing conformation changes in the mammalian ribosomal decoding center. METTL5 promotes p70-S6K activation and proper translation initiation, and the loss of METTL5 significantly reduces the abundance of polysome. METTL5 expression is elevated in breast cancer patient samples and is required for growth of several breast cancer cell lines. We further find that Caenorhabditis elegans lacking the homolog metl-5 develop phenotypes known to be associated with impaired translation. Altogether, our findings uncover critical and conserved roles of METTL5 in the regulation of translation.


Subject(s)
Breast Neoplasms/enzymology , Methyltransferases/metabolism , RNA, Ribosomal, 18S/metabolism , Adenosine/metabolism , Animals , Breast Neoplasms/pathology , Caenorhabditis elegans , Cell Growth Processes/physiology , Cell Line, Tumor , Female , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Methylation
16.
EMBO Rep ; 21(10): e49863, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32783360

ABSTRACT

RNA modifications represent a novel layer of regulation of gene expression. Functional experiments revealed that N6 -methyladenosine (m6 A) on messenger RNA (mRNA) plays critical roles in cell fate determination and development. m6 A mark also resides in the decoding center of 18S ribosomal RNA (rRNA); however, the biological function of m6 A on 18S rRNA is still poorly understood. Here, we report that methyltransferase-like 5 (METTL5) methylates 18S rRNA both in vivo and in vitro, which is consistent with previous reports. Deletion of Mettl5 causes a dramatic differentiation defect in mouse embryonic stem cells (mESCs). Mechanistically, the m6 A deposited by METTL5 is involved in regulating the efficient translation of F-box and WD repeat domain-containing 7 (FBXW7), a key regulator of cell differentiation. Deficiency of METTL5 reduces FBXW7 levels and leads to the accumulation of its substrate c-MYC, thereby delaying the onset of mESC differentiation. Our study uncovers an important role of METTL5-mediated 18S m6 A in mESC differentiation through translation regulation and provides new insight into the functional significance of rRNA m6 A.


Subject(s)
Methyltransferases , Mouse Embryonic Stem Cells , Animals , Cell Differentiation/genetics , Methyltransferases/genetics , Mice , RNA, Messenger , RNA, Ribosomal, 18S/genetics
17.
Circ Res ; 126(12): 1706-1720, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32212953

ABSTRACT

RATIONALE: The stress response of heart rate, which is determined by the plasticity of the sinoatrial node (SAN), is essential for cardiac function and survival in mammals. As an RNA-binding protein, CIRP (cold-inducible RNA-binding protein) can act as a stress regulator. Previously, we have documented that CIRP regulates cardiac electrophysiology at posttranscriptional level, suggesting its role in SAN plasticity, especially upon stress conditions. OBJECTIVE: Our aim was to clarify the role of CIRP in SAN plasticity and heart rate regulation under stress conditions. METHODS AND RESULTS: Telemetric ECG monitoring demonstrated an excessive acceleration of heart rate under isoprenaline stimulation in conscious CIRP-KO (knockout) rats. Patch-clamp analysis and confocal microscopic Ca2+ imaging of isolated SAN cells demonstrated that isoprenaline stimulation induced a faster spontaneous firing rate in CIRP-KO SAN cells than that in WT (wild type) SAN cells. A higher concentration of cAMP-the key mediator of pacemaker activity-was detected in CIRP-KO SAN tissues than in WT SAN tissues. RNA sequencing and quantitative real-time polymerase chain reaction analyses of single cells revealed that the 4B and 4D subtypes of PDE (phosphodiesterase), which controls cAMP degradation, were significantly decreased in CIRP-KO SAN cells. A PDE4 inhibitor (rolipram) abolished the difference in beating rate resulting from CIRP deficiency. The mechanistic study showed that CIRP stabilized the mRNA of Pde4b and Pde4d by direct mRNA binding, thereby regulating the protein expression of PDE4B and PDE4D at posttranscriptional level. CONCLUSIONS: CIRP acts as an mRNA stabilizer of specific PDEs to control the cAMP concentration in SAN, maintaining the appropriate heart rate stress response.


Subject(s)
Cold Shock Proteins and Peptides/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Heart Rate , Myocytes, Cardiac/metabolism , RNA-Binding Proteins/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Cells, Cultured , Cold Shock Proteins and Peptides/genetics , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Isoproterenol/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Phosphodiesterase Inhibitors/pharmacology , RNA Stability , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Rolipram/pharmacology , Sinoatrial Node/cytology , Sinoatrial Node/metabolism , Sinoatrial Node/physiology , Stress, Physiological
18.
Nat Chem Biol ; 16(5): 489-492, 2020 05.
Article in English | MEDLINE | ID: mdl-32015521

ABSTRACT

RNA secondary structure is critical to RNA regulation and function. We report a new N3-kethoxal reagent that allows fast and reversible labeling of single-stranded guanine bases in live cells. This N3-kethoxal-based chemistry allows efficient RNA labeling under mild conditions and transcriptome-wide RNA secondary structure mapping.


Subject(s)
Aldehydes/chemistry , RNA/chemistry , Animals , Butanones , Embryonic Stem Cells , Guanine/chemistry , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Mice , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes , RNA Folding , Transcriptome
20.
Nat Commun ; 10(1): 5332, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767846

ABSTRACT

Dynamic mRNA modification in the form of N6-methyladenosine (m6A) adds considerable richness and sophistication to gene regulation. The m6A mark is asymmetrically distributed along mature mRNAs, with approximately 35% of m6A residues located within the coding region (CDS). It has been suggested that methylation in CDS slows down translation elongation. However, neither the decoding feature of endogenous mRNAs nor the physiological significance of CDS m6A has been clearly defined. Here, we found that CDS m6A leads to ribosome pausing in a codon-specific manner. Unexpectedly, removing CDS m6A from these transcripts results in a further decrease of translation. A systemic analysis of RNA structural datasets revealed that CDS m6A positively regulates translation by resolving mRNA secondary structures. We further demonstrate that the elongation-promoting effect of CDS methylation requires the RNA helicase-containing m6A reader YTHDC2. Our findings established the physiological significance of CDS methylation and uncovered non-overlapping function of m6A reader proteins.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis , RNA Helicases/metabolism , RNA, Messenger/metabolism , Adenosine/analogs & derivatives , Adenosine/genetics , Animals , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Methylation , Mice , Open Reading Frames/genetics , RNA Helicases/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...