Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 397, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745144

ABSTRACT

BACKGROUND AND AIMS: The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield components of L. chinensis. METHODS: We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth. RESULTS: The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds. CONCLUSIONS: Our findings demonstrate significant differences in seed yield components among three planting years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting years.


Subject(s)
Germination , Poaceae , Seeds , Seeds/growth & development , Seeds/physiology , Poaceae/growth & development , Poaceae/physiology , Seedlings/growth & development , Seedlings/physiology , Soil/chemistry , Stress, Physiological
2.
Biology (Basel) ; 12(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887053

ABSTRACT

Salinity is a pressing and widespread abiotic stress, adversely affecting agriculture productivity and plant growth worldwide. Seed germination is the most critical stage to seedling growth and establishing plant species in harsh environments, including saline stress. However, seed germination characteristics and stress tolerance may vary among geographical locations, such as various provenances. Suaeda salsa (Linn.) Pall. (S. salsa) is a halophytic plant that exhibits high salt tolerance and is often considered a pioneer species for the restoration of grasslands. Understanding the germination characteristics and stress tolerance of the species could be helpful in the vegetation restoration of saline-alkali land. In this study, we collected S. salsa seeds from seven different saline-alkali habitats (S1-S7) in the Songnen Plain region to assess the germination and seedling growth responses to NaCl, Na2CO3, and NaHCO3, and to observe the recovery of seed germination after relieving the salt stress. We observed significant differences in germination and seedling growth under three salt stresses and among seven provenances. Resistance to Na2CO3 and NaHCO3 stress was considerably higher during seedling growth than seed germination, while the opposite responses were observed for NaCl resistance. Seeds from S1 and S7 showed the highest tolerance to all three salt stress treatments, while S6 exhibited the lowest tolerance. Seeds from S2 exhibited low germination under control conditions, while low NaCl concentration and pretreatment improved germination. Ungerminated seeds under high salt concentrations germinated after relieving the salt stress. Germination of ungerminated seeds after the abatement of salt stress is an important adaptation strategy for black S. salsa seeds. While seeds from most provenances regerminated under NaCl, under Na2CO3 and NaHCO3, only seeds from S4 and S7 regerminated. These findings highlight the importance of soil salinity in the maternal environment for successful seed germination and seedling growth under various salinity-alkali stresses. Therefore, seed sources and provenance should be considered for vegetation restoration.

3.
J Mech Behav Biomed Mater ; 145: 106045, 2023 09.
Article in English | MEDLINE | ID: mdl-37506569

ABSTRACT

OBJECTIVE: This work analyzed and compared the mechanical properties of identical cracked tooth models treated with different materials and crown parameters. Thus, to provide dentists with a more structured way to select materials and geometric parameters and determine the strongest restoration model for cracked teeth. METHODS: This work used finite element analysis (FEA). We applied 25 restorative models, including five restorative materials, and three preparation parameters. Seven mechanical properties of the cracked tooth preparation were analyzed using correlation analysis. RESULTS: The highest lifetime of the cracked preparation was obtained for crowns with a 5° of polymerization, width = 0.8 mm, and a length offset of 0.2 mm. The highest lifetime was obtained with ZC crown material, but the least deformation of the cracked tip was obtained with LU material. SIGNIFICANCE: The results showed that the larger MOE material for the crown and a reasonable increase in the thickness and length of the crown is a favorable method to prevent further cracks to extend. This FEA study, thereby forming a novel basis for clinical guidance as to preparation of dental crowns applicable to cracked teeth.


Subject(s)
Cracked Tooth Syndrome , Crowns , Humans , Cracked Tooth Syndrome/therapy , Finite Element Analysis , Head , Composite Resins , Dental Materials
4.
Chemosphere ; 338: 139547, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467856

ABSTRACT

Multi-carbon air pollutants pose serious hazards to the environment and health, especially soot and volatile organic compounds (VOCs). Catalytic oxidation is one of the most effective technologies for eliminating them. The oxidation of soot and most hydrocarbon VOCs begins with C-H (or edge-CH) activation, so this commonality can be targeted to design active sites. Rationally designed interface nanostructures optimize metal-support interactions (MSIs), providing suitable active sites for C-H activation. Meanwhile, the interfacial reactant spillover facilitates the further decomposition of activated intermediates. Thus, rationally exploiting interfacial effects is critical to enhancing catalytic activity. In this review, we analyzed recent advances in the following aspects: I. Understanding of the interface effects and design; II. Optimization of the catalyst-reactant contact, metal-support interface, and MSIs; III. Design of the interfacial composition and perimeter. Based on the analysis of the advances and current status, we provided challenges and opportunities for the rational design of interface nanostructures and interface-related stability. Meanwhile, a critical outlook was given on the interfacial sites of single-atom catalysts (SACs) for specific activation and catalytic selectivity.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/chemistry , Carbon , Soot , Oxidation-Reduction , Metals/chemistry , Volatile Organic Compounds/chemistry , Catalysis
5.
J Mech Behav Biomed Mater ; 144: 105946, 2023 08.
Article in English | MEDLINE | ID: mdl-37369171

ABSTRACT

OBJECTIVE: In this study, a preclinical approach was used to analyze and directly compare the fatigue performance (fatigue life and damage percentage) and maximum principal stresses (Max. Ps) of prepared models treated with different materials and geometric parameters. METHODS: Four groups of preparative parameters (crown width, crown length, degree of polymerization and material) were selected, each with five variables. An alternating cyclic occlusal load with an amplitude of 300 N was applied to the ball part along the longitudinal axis. The fatigue properties of the preparations and Max.Ps were analyzed. RESULTS: A shoulder width of 0.8 mm, a shoulder height offset of 0.2 mm, a degree of polymerization of 5°, and a crown material of ZC resulted in the smallest percentage of damage. In contrast, the effect of different modulus of elasticity (MOE) on Max.Ps was not significant (p = 0.609). CONCLUSION: The results suggest that the selection of larger modulus of elasticity MOE and larger Poisson's ratio material's, preparation of larger shoulder widths within safety, reasonable increase in crown length, and selection of larger degree of polymerization are favorable methods to protect the preparation.


Subject(s)
Crowns , Molar , Elasticity , Dental Stress Analysis , Dental Porcelain , Materials Testing , Finite Element Analysis , Ceramics
6.
Mater Today Bio ; 20: 100657, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37229213

ABSTRACT

Soft robots have received a lot of attention because of their great human-robot interaction and environmental adaptability. Most soft robots are currently limited in their applications due to wired drives. Photoresponsive soft robotics is one of the most effective ways to promote wireless soft drives. Among the many soft robotics materials, photoresponsive hydrogels have received a lot of attention due to their good biocompatibility, ductility, and excellent photoresponse properties. This paper visualizes and analyzes the research hotspots in the field of hydrogels using the literature analysis tool Citespace, demonstrating that photoresponsive hydrogel technology is currently a key research direction. Therefore, this paper summarizes the current state of research on photoresponsive hydrogels in terms of photochemical and photothermal response mechanisms. The progress of the application of photoresponsive hydrogels in soft robots is highlighted based on bilayer, gradient, orientation, and patterned structures. Finally, the main factors influencing its application at this stage are discussed, including the development directions and insights. Advancement in photoresponsive hydrogel technology is crucial for its application in the field of soft robotics. The advantages and disadvantages of different preparation methods and structures should be considered in different application scenarios to select the best design scheme.

7.
J Mech Behav Biomed Mater ; 142: 105818, 2023 06.
Article in English | MEDLINE | ID: mdl-37068432

ABSTRACT

OBJECTIVE: This work used 3D finite element analysis (FEA) to analyze and directly compare the stress intensity factor (SIF) and stress distribution at the crack tip of identical cracked tooth models restored with different materials and crown parameters. METHODS: A 3D model of the cracked tooth was generated. Then, we applied 25 restorative models, including three parameters (shoulder height, width, and degree of polymerization), five restorative materials (GC, IPS, LU, ZC, VE), and two combinations of types of cement (RMGIC and GIC). An occlusal load of 800N was applied to the spherical part along the longitudinal axis. The stress distribution of the preparation and the SIF of the crack tip was analyzed. RESULTS: The crack tip SIF was minimal for a shoulder height offset of 0.8 mm (P = 0.032), a shoulder width of 0.6 mm (P = 0.045), a crown material of ZC (P < 2e-16), and a cement material of RMGIC (P < 0.05), respectively. In contrast, the effect of different polymerization degrees on SIF was insignificant (P = 0.95). CONCLUSION: Our results suggest that the selection of a larger modulus of elasticity (MOE) material for the crown, the preparation of a smaller shoulder width within a safe range, a reasonable increase in the crown length, and the selection of adhesive materials with high fracture toughness are favorable methods to prevent further crack extension.


Subject(s)
Crowns , Molar , Finite Element Analysis , Elasticity , Glass Ionomer Cements , Dental Stress Analysis , Materials Testing
8.
Biology (Basel) ; 11(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35053124

ABSTRACT

Soil salinity is a widespread and important abiotic factor impeding rice production by adversely affecting seed germination, seedling growth, and plant productivity. In this study, the rice cultivar TH899 was treated with 200 Gy of heavy-ion beam irradiation, and 89 mutant lines with stable phenotypes were selected using the pedigree method based on continuous assessment over six years. The seed germination performance of these mutants was tested under different saline-alkaline concentrations. Five highly tolerant lines were further evaluated in a series of experiments at the seedling stage and in the field. During the seedling stage, the reduction of seedling length, root length, fresh weight, and dry weight were dramatically lower in these five mutants than those in TH899 under saline-alkali stress. The K+/Na+ ratio was higher in these five mutants than in TH899. In the field experiment, the grain yield of mutant lines was higher than that of TH899. In addition, the grain yield of mutant line M89 was higher than that of the local cultivar in actual production. These mutant lines are expected to increase grain yield in soda saline-alkaline regions in northeast China.

9.
Plants (Basel) ; 10(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34961146

ABSTRACT

Seed germination in response to fire-related cues has been widely studied in species from fire-prone ecosystems. However, the germination characteristics of species from non-fire-prone ecosystems, such as the saline-alkaline grassland, where fire occasionally occurs accidentally or is used as a management tool, have been less studied. Here, we investigate the effects of different types of fire cues (i.e., heat and smoke water) and their combined effect on the seed germination of 12 species from the saline-alkaline grassland. The results demonstrated that heat shock significantly increased the germination percentage of Suaeda glauca and Kochia scoparia var. sieversiana seeds. Smoke water significantly increased the germination percentage of Setaria viridis and K. scoparia seeds. However, compared with single fire cue treatments, the combined treatment neither promoted nor inhibited seed germination significantly in most species. These results suggest that fire cues can be used as germination enhancement tools for vegetation restoration and biodiversity protection of the saline-alkaline grassland.

10.
Front Plant Sci ; 12: 630338, 2021.
Article in English | MEDLINE | ID: mdl-33912201

ABSTRACT

The period between seed germination and seedling establishment is one of the most vulnerable stages in the life cycle of annuals in the saline environments. Although germination characteristics of Suaeda salsa seeds have been reported, the comparative germination patterns of dimorphic seeds and seedling growth to different abiotic stresses remain poorly understood. In this study, germination responses of dimorphic seeds to light and temperature were compared. Meanwhile, responses of dimorphic seeds and thereafter seedlings of S. salsa to different concentrations of NaCl and Na2SO4 were also tested. The results showed that the light did not significantly affect germination percentage of brown seeds, but significantly promoted germination of black seeds. Brown seeds could reach high germination percentage over a wide temperature range, however, germination of black seeds gradually increased with the increase of temperature. Brown seeds had higher germination percentage and velocity than black seeds under the same salt conditions. However, black seeds had higher recovery germination than brown seeds when transferred to deionized water. Young seedlings had lower salt tolerance than germinating seeds. At the same concentrations, Na2SO4 had stronger inhibitory effect on seed germination and seedling growth than NaCl. This study comprehensively compared germination traits of dimorphic seeds and seedling growth of S. salsa, and then developed a conceptual model to explain their adaptation to harsh saline environment.

11.
PeerJ ; 8: e8726, 2020.
Article in English | MEDLINE | ID: mdl-32195053

ABSTRACT

BACKGROUND: Saline-sodic soils are widely distributed in arid and semi-arid regions around the world. High levels of salt and sodium inhibit the growth and development of crops. However, there has been limited reports on both osmotic potential in soil solutions (OPss) and characteristics of Na+ and K+ absorption in rice in saline-sodic soils under various amendments application. METHODS: A field experiment was conducted between 2009 and 2017 to analyze the influence of amendments addition to saline-sodic soils on rice growth and yield. Rice was grown in the soil with no amendment (CK), with desulfurization gypsum (DG), with sandy soil (SS), with farmyard manure (FM) and with the mixture of above amendments (M). The osmotic potential in soil solution, selective absorption of K+ over Na+ (SA), selective transport of K+ over Na+ (ST), the distribution of K+ and Na+and yield components in rice plants were investigated. RESULTS: The results indicated that amendments application have positive effects on rice yield. The M treatment was the best among the tested amendments with the highest rice grain yield. M treatment increased the OPss values significantly to relieve the inhibition of the water uptake by plants. Additionally, the M treatment significantly enhanced K+ concentration and impeded Na+ accumulation in shoots. SA values were reduced while ST values were increased for all amendments. In conclusion, a mixture of desulfurization gypsum, sandy soil and farmyard manure was the best treatment for the improvement of rice growth and yield in the Songnen Plain, northeast China.

12.
Sci Rep ; 8(1): 13214, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30181574

ABSTRACT

Seed priming is a widely used technique in crops to obtain uniform germination and high-quality seedlings. In this study, we found a long-term effect of seed priming with gibberellic acid-3 (GA3) on plant growth and production in Leymus chinensis. Seeds were germinated on agar plates containing 0-200 µM GA3, and the germinated seedlings were transplanted to clay planting pots and grown for about one year. The clonal tillers grown from the mother plants were transplanted to field conditions in the second year. Results showed that GA3 treatment significantly increased seed germination rate by 14-27%. GA3 treatment also promoted subsequent plant growth and biomass production, as shown by a significant increase in plant height, tiller number, and fresh and dry weight in both pot (2016) and field (2017) conditions. It is particularly noteworthy that the growth-promoting effect of a single seed treatment with GA3 lasted for at least two years. In particular, GA3 treatment at 50 µM increased aboveground fresh and dry weight by 168.2% and 108.9% in pot-grown conditions, and 64.5% and 126.2% in field-grown conditions, respectively. These results imply a transgenerational transmission mechanism for the GA-priming effect on clonal offspring growth and biomass production in L. chinensis.


Subject(s)
Crops, Agricultural/growth & development , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Poaceae/growth & development , Seeds/growth & development , Biomass , Germination , Plant Development , Seedlings/growth & development
13.
AoB Plants ; 10(4): ply042, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30057736

ABSTRACT

Seed dormancy status regulates the response of seeds to environmental cues that can trigger germination. Anigozanthos flavidus (Haemodoraceae) produces seeds with morphophysiological dormancy (MPD) that are known to germinate in response to smoke, but embryo growth dynamics and germination traits in response to temperatures and after-ripening have not been well characterized. Seeds of A. flavidus, after-ripened for 28 months at 15 °C/15 % relative humidity, were incubated on water agar, water agar containing 1 µM karrikinolide (KAR1) or 50 µM glyceronitrile at 5, 10, 15, 20, 25, 20/10 and 25/15 °C for 28 days. After incubation at 5, 10 and 25 °C for 28 days, seeds were transferred to 15 °C for another 28 days. Embryo growth dynamics were tested at 5, 10, 15 and 25 °C. Results demonstrated that fresh seeds of A. flavidus had MPD and the physiological dormancy (PD) component could be broken by either glyceronitrile or dry after-ripening. After-ripened seeds germinated to ≥80 % at 15-20 °C while no additional benefit of germination was observed in the presence of the KAR1 or glyceronitrile. Embryo length significantly increased at 10 °C, and only slightly increased at 5 °C, while growth did not occur at 25 °C. When un-germinated seeds were moved from 5-10 °C to 15 °C for a further 28 days, germination increased from 0 to >80 % in significantly less time indicating that cold stratification may play a key role in the germination process during winter and early spring in A. flavidus. The lower germination (<50 %) of seeds moved from 25 to 15 °C was produced by the induction of secondary dormancy. Induction of secondary dormancy in seeds exposed to warm stratification, a first report for Anigozanthos species, suggests that cycling of PD may be an important mechanism of controlling germination timing in the field.

14.
Front Plant Sci ; 8: 1580, 2017.
Article in English | MEDLINE | ID: mdl-28943882

ABSTRACT

Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.

15.
Toxicon ; 130: 79-86, 2017 May.
Article in English | MEDLINE | ID: mdl-28259756

ABSTRACT

Alpha-toxin produced by Clostridium perfringens is an important virulence factor, causing food poisoning and gas gangrene in humans. As such, it is considered a potential bioterrorism threat. To date, there is still no human effective therapeutic drug against alpha-toxin. In this study, a human single chain antibody against alpha-toxin was produced from synthetic (Tomlinson I + J) naive phage display libraries, and its preventive and therapeutic efficacy in mice was examined. To prove the neutralizing potential of the scFv, alpha-toxin was preincubated with scFv and subsequently tested for its lecithinase and hemolytic activity, as well as its lethal effect in mice following intravenous administration. The equilibrium association constant between scFv and CPA was 2.02 × 1010 (1/M), as analyzed by SPR. The scFv could inhibit lecithinase and hemolytic activity, and provided effective protection against alpha-toxin when mice were challenged 1-h post scFv injection. In addition, the survival rate reached 80% for mice treated with scFv within 30 min of being challenged with a 2 × LD50 dose of alpha-toxin. These results confirmed that we successfully prepared a human scFv against C. perfringens type A alpha-toxin, which can be used in the prevention and treatment of alpha-toxin-related illness.


Subject(s)
Bacterial Toxins/immunology , Calcium-Binding Proteins/immunology , Single-Chain Antibodies/therapeutic use , Type C Phospholipases/immunology , Animals , Bacterial Toxins/toxicity , Blotting, Western , Calcium-Binding Proteins/toxicity , Humans , Lethal Dose 50 , Mice , Peptide Library , Sequence Analysis, DNA , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/isolation & purification , Type C Phospholipases/toxicity
16.
Data Brief ; 3: 185-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26217742

ABSTRACT

To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT) and controlled atmosphere (CA) storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. 'Akihime'). Postharvest volatile compounds were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry [2]. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis.

17.
Dongwuxue Yanjiu ; 36(2): 103-8, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25855229

ABSTRACT

Gender and genetic strain are two prominent variants that influence drug abuse. Although certain sex-related behavioral responses have been previously characterized in ICR mice, little is known about the effects of sex on morphine-induced behavioral responses in this outbred strain. Therefore, in this study, we investigated the sex differences of morphine-induced locomotion, anxiety-like and social behaviors in ICR mice. After morphine or saline exposure for four consecutive days (twice daily), increased locomotion, more time spent in the central area, as well as attenuated rearing and self-grooming behaviors were found in morphine-treated females in an open field; no differences were found in locomotion and the time spent in the central area between male and female controls. When interacting with the same-sex individuals, female controls were engaged in more social investigation, following, body contacting and self-grooming behaviors than controls; morphine exposure reduced contacting and self-grooming behaviors in females; in contrast, these effects were not found in males. These results indicate that female ICR mice are more prosocial and are more susceptible to morphine exposure than males.


Subject(s)
Behavior, Animal/drug effects , Morphine/pharmacology , Social Behavior , Animals , Female , Male , Mice , Mice, Inbred ICR , Sex Factors
18.
PLoS One ; 10(4): e0122319, 2015.
Article in English | MEDLINE | ID: mdl-25902145

ABSTRACT

BACKGROUND: Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. METHODOLOGY: We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. PRINCIPAL FINDINGS: Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). CONCLUSIONS: Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target species L. chinensis. This approach could be beneficial for the restoration of dominant species in a wide range of degraded grassland ecosystems.


Subject(s)
Conservation of Natural Resources , Grassland , Poaceae/classification , Seed Bank , Soil/chemistry , Seeds
19.
Plant Physiol Biochem ; 90: 50-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25780993

ABSTRACT

Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 µM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 µM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.


Subject(s)
Abscisic Acid/pharmacology , Adaptation, Physiological , Carbonates/adverse effects , Oryza/drug effects , Salts/adverse effects , Seedlings/drug effects , Stress, Physiological , Abscisic Acid/metabolism , Biomass , Cell Membrane , Hydrogen-Ion Concentration , Oryza/growth & development , Oryza/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots , Plant Shoots , Potassium/metabolism , Salinity , Seedlings/metabolism , Sodium/metabolism , Water/metabolism
20.
J Proteomics ; 120: 44-57, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25753123

ABSTRACT

To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT) and controlled atmosphere (CA) storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. 'Akihime'). Postharvest physiological quality traits including firmness, total soluble solids, total acidity, ascorbic acid and volatile production were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis. The proteins spanned a range of functions in various metabolic pathways and networks involved in carbohydrate and energy metabolism, volatile biosynthesis, phenylpropanoid activity, stress response and protein synthesis, degradation and folding. After CA and LT storage, 16 (13) and 11 (17) proteins, respectively, were significantly increased (decreased) in abundance, while expression profile of 12 proteins was significantly changed by both CA and LT. To summarize, the differential variability of abundance in strawberry proteome, working in a cooperative manner, provided an overview of the biological processes that occurred during CA and LT storage. BIOLOGICAL SIGNIFICANCE: Controlled atmosphere storage at an optimal temperature is regarded to be an effective postharvest technology to delay fruit senescence and maintain fruit quality during shelf life. Nonetheless, little information on fruit proteomic changes under controlled atmosphere and/or low temperature storage is available. The significance of this paper is that it is the first study employing a label-free approach in the investigation of strawberry fruit response to controlled atmosphere and cold storage. Changes in postharvest physiological quality traits including volatile production, firmness, ascorbic acid, soluble solids and total acidity were also characterized. Significant biological changes associated with senescence were revealed and differentially abundant proteins under various storage conditions were identified. Proteomic profiles were linked to physiological aspects of strawberry fruit senescence in order to provide new insights into possible regulation mechanisms. Findings from this study not only provide proteomic information on fruit regulation, but also pave the way for further quantitative studies at the transcriptomic and metabolomic levels.


Subject(s)
Food Analysis/methods , Fragaria/metabolism , Fruit/metabolism , Heat-Shock Response , Plant Proteins/metabolism , Proteome/metabolism , Atmosphere , Cold Temperature , Food Storage/methods , Gene Expression Profiling/methods , Heat-Shock Response/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...