Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 421: 126830, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34396975

ABSTRACT

Numerous studies have investigated neurobehavioral toxicity of microplastics, but no studies have illustrated mechanism via brain-gut axis. Here, juvenile discus fish (Symphysodon aequifasciatus) were exposed for 96 h to microfibers (900 µm, fiber, MFs) or nanoplastics (~88 nm, bead, NPs) with three concentrations (0, 20 and 200 µg/L). Accumulation in fish gut was independent of plastics type and concentration. MFs reduced growth performance while NPs weakened swimming and predatory performance of post-exposed discus. For brain cholinesterase activity, acetylcholinesterase was activated by NPs while NPs/MFs exposure inhibited butyrylcholinesterase. Concentrations of neurotransmitters (acetylcholine, dopamine and γ-aminobutyric acid) increased in brain but decreased in gut after NPs or MFs exposure. For gut microbiota, increased richness under MFs exposure was observed. At phylum level, Proteobacteria proportion was lower in NPs but higher in MFs. Abundance of Clostridia and Fusobacteriia (Bacillus), potentially secreting neurotransmitters, increased in NPs but decreased in MFs. Brain transcriptomics revealed seven upregulated and four downregulated genes concerning neural-activities. Pathways of neuroactive ligand-receptor interaction and serotonergic synapse were enriched in both MFs and NPs, but dopaminergic synapse pathway was enriched only in MFs. These results established a novel mechanism by which microplastics might cause behavioral toxicities via brain-gut-microbiota axis.


Subject(s)
Gastrointestinal Microbiome , Plastics , Acetylcholinesterase , Animals , Brain , Butyrylcholinesterase , Microplastics
2.
J Hazard Mater ; 424(Pt D): 127751, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34799162

ABSTRACT

As detriments in aquatic environments, microplastics (MPs) have been commonly studied on organisms, but tissue-scale effects of MPs were poorly understood. Discus fish (Symphysodon aequifasciatus), herewith, were exposed to polystyrene MPs (0/20/200 µg/L) for 28 d. We found that MPs significantly inhibited growth performance. MPs were observed in skin, gill and intestine after 14/28-d exposure. MPs bioaccumulation was independent of exposure time, but increased with MPs concentrations. Microbial community diversity of fish gill, but not skin and intestine, in MPs treatments was significantly increased. Bacterial community of MP-treated skin and gill were obviously separated from control. Skin dominant phyla changed from Actinobacteriota to Proteobacteria and Firmicutes. Proteobacteria gradually occupied dominance in gill after exposure. Furthermore, MPs-induced skin oxidative stress was demonstrated by the activation of superoxide dismutase and catalase. Skin malondialdehyde also increased and showed significant correlations with four bacterial phyla, e.g., Proteobacteria. Gill Na+/K+-ATPase activity decreased, strongly correlating to microbial community changes caused by MPs. Intestinal digestive enzymes activity (pepsin, lipase and α-amylase) reduced, revealing correlation with bacterial community especially Fibrobacterota. These results suggest a tissue-specific effect of MPs to microbial community and biomarkers in aquatic organism.


Subject(s)
Cichlids , Microbiota , Water Pollutants, Chemical , Animals , Biomarkers , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...