Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(11): e202216950, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36625196

ABSTRACT

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.

2.
Dalton Trans ; 51(20): 7817-7827, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35532008

ABSTRACT

High-performance lithium ion batteries (LIBs) juggling high reversible capacity, excellent rate capability and ultralong cycle stability are urgently needed for all electronic devices. Here we report employing a vesicle-like porous N-doped carbon material (abbr. N/C-900) as a highly active anode for LIBs to balance high capacity, high rate and long life. The N/C-900 material was fabricated by pyrolysis of a designed crystal MOF LCU-104, which exhibits a graceful two-fold interpenetrating structural feature of N-rich nanocages {Zn6(dttz)4} linked through an N-donor ligand bpp (H3dttz = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole, bpp = 1,3-bis(4-pyridyl)propane). The features of LCU-104 combine high N content (35.1%), interpenetration, and explosive characteristics, which endow the derived N/C material with optimized N-doping for tuning its chemical and electronic structure, a suitably thicker wall to enhance its stability, and a vesicle-like structure to improve its porosity. As an anode material for LIBs, N/C-900 delivers a highly reversible capacity of ca. 734 mA h g-1 at a large current density of 1 A g-1 until the 2000th cycle, revealing its ultralong cycle stability and excellent rate capability. The unique structure and preferential interaction between abundant pyridinic N active sites and Li atoms are responsible for the improved excellent lithium storage capacity and durability performances of the anode according to analysis of the results of computational modeling.

3.
Dalton Trans ; 50(46): 17265-17274, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34787163

ABSTRACT

Electrochemical water splitting is convinced as one of the most promising solutions to combat the energy crisis. The exploitation of efficient hydrogen and oxygen evolution reaction (HER/OER) bifunctional electrocatalysts is undoubtedly a vital spark yet challenging for imperative green sustainable energy. Herein, through introducing a simple pH regulated redox reaction into a tractable hydrothermal procedure, a hierarchical Fe3O4@MnOx binary metal oxide core-shell nano-polyhedron was designed by evolving MnOx wrapped Fe3O4. The MnOx effectively prevents the agglomeration and surface oxidation of Fe3O4 nano-particles and increases the electrochemically active sites. Benefiting from the generous active sites and synergistic effects of Fe3O4 and MnOx, the Fe3O4@MnOx-NF nanocomposite implements efficient HER/OER bifunctional electrocatalytic performance and overall water splitting. As a result, hierarchical Fe3O4@MnOx only requires a low HER/OER overpotential of 242/188 mV to deliver 10 mA cm-2, a small Tafel slope of 116.4/77.6 mV dec-1, combining a long-term cyclability of 5 h. Impressively, by applying Fe3O4@MnOx as an independent cathode and anode, the overall water splitting cell supplies a competitive voltage of 1.64 V to achieve 10 mA cm-2 and super long cyclability of 80 h. These results reveal that this material is a promising candidate for practical water electrolysis application.

4.
Inorg Chem ; 60(2): 671-681, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33395274

ABSTRACT

Luminescent metal-organic frameworks (LMOFs) as sensors showing highly efficient detection toward toxic heavy-metal ions are in high demand for human health and environmental protection. A novel nanocage-based N-rich LMOF (LCU-103) has been constructed and characterized. It is a 2-fold interpenetrating structure built from N-rich {Zn6(dttz)4} nanocages extended by N-donor ligand Hdpa [H3dttz = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole; Hdpa = 4,4'-dipyridylamine]. Notably, LCU-103 contains abundant N functional sites anchoring on both the windows of nanocages and the inner channels of the framework that can interact with metal ions and then recognize them. As a result, it can serve as a luminescent sensing material for detecting trace amounts of Fe3+ and Cu2+ ions with low limits of detection (LODs) of 1.45 and 1.66 µM, respectively, through a luminescent quenching mechanism. Meanwhile, LCU-103 as a LMOF sensor exhibits several advantages such as high sensitivity, appropriate selectivity (for Fe3+ in H2O), recycling stability, and fast response times in N,N-dimethylformamide. Moreover, LCU-103 also displays good luminescent quenching activity toward Fe3+ in H2O and a simulated 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid biological system with low LODs of 1.51 and 1.52 µM, respectively. LCU-103 test papers were further prepared to offer easy and real-time detection of Fe3+ and Cu2+ ions. Importantly, when density functional theory calculations and multiple experimental evidence, including X-ray photoelectron spectroscopy, UV-vis absorption, luminescence decay lifetimes, and quantum efficiencies, are combined, a preferred N-donor site and possible weak interaction sensing mechanism is also proposed to elucidate the quenching effect.

5.
RSC Adv ; 11(11): 5947-5957, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-35423155

ABSTRACT

The exploitation of efficient hydrogen evolution reaction (HER) electrocatalysts has become increasingly urgent and imperative; however, it is also challenging for high-performance sustainable clean energy applications. Herein, novel Co9S8 nanoparticles embedded in a porous N,S-dual doped carbon composite (abbr. Co9S8@NS-C-900) were fabricated by the pyrolysis of a single crystal Co-MOF assisted with thiourea. Due to the synergistic benefit of combining Co9S8 nanoparticles with N,S-dual doped carbon, the composite showed efficient HER electrocatalytic activities and long-term durability in an alkaline solution. It shows a small overpotential of -86.4 mV at a current density of 10.0 mA cm-2, a small Tafel slope of 81.1 mV dec-1, and a large exchange current density (J 0) of 0.40 mA cm-2, which are comparable to those of Pt/C. More importantly, due to the protection of Co9S8 nanoparticles by the N,S-dual doped carbon shell, the Co9S8@NS-C-900 catalyst displays excellent long-term durability. There is almost no decay in HER activities after 1000 potential cycles or it retains 99.5% of the initial current after 48 h.

6.
ACS Appl Mater Interfaces ; 12(40): 44710-44719, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32902956

ABSTRACT

The construction of an efficient oxygen reduction reaction and oxygen evolution reaction (ORR/OER) bifunctional electrocatalyst is of great significance but still remains a giant challenge for high-performance metal-air batteries. In this study, uniform FeS/Fe3C nanoparticles embedded in a porous N,S-dual doped carbon honeycomb-like composite (abbr. FeS/Fe3C@NS-C-900) have been conveniently fabricated by pyrolysis of a single-crystal Fe-MOF, which has a low potential gap ΔE of ca. 0.72 V, a competitive power density of 90.9 mW/cm2, a specific capacity as high as 750 mAh/gZn, and excellent cycling stabilities over 865 h (1730 cycles) at 2 mA/cm2 when applied as a cathode material for rechargeable zinc-air batteries. In addition, the two series-linked Zn-air batteries successfully powered a 2.4 V LED light as a real power source. The efficient ORR/OER bifunctional electrocatalytic activity and long-term durability of the obtained composite might be attributed to the characteristic honeycomb-like porous structure with sufficient accessible active sites, the synergistic effect of FeS and Fe3C, and the N,S codoped porous carbon, which provides a promising application potential for portable electronic Zn-air battery related devices.

7.
Inorg Chem ; 59(5): 2680-2688, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32077693

ABSTRACT

Six novel copper(I) cluster-based coordination polymers (CPs) [Cu9(pzt)7Cl2]n (1), [Cu2(pzt)Cl]n (2), [Cu4(pzt)3Br]n (3), [Cu(pzt)]n (4), [Cu4(pzt)3I]n (5), and [Cu7(pzt)6I]n (6) were solvothermally synthesized using Hpzt (Hpzt = pyrazine-2-thiol) ligand and well-characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). Six CPs exhibit either 2D (4 and 6) or 3D (1-3, and 5) network based on diverse multinuclear {CuxSy} clusters. The structural evolutions of 1-6 are greatly influenced by types of metal halides and the ligand-to-metal molar ratio used in the reaction. Among them, compound 1 displays interesting temperature-dependent photoluminescence arising from triplet cluster-centered (3CC) excited state from the cluster metal core. Compounds 1-6 also exhibit photocurrent responses upon visible-light illumination (λ = 420 nm) in the order 6 > 5 > 3 > 1 > 4 > 2. This work not only shows the structural diversity of {CuxSy} clusters-based CPs but also provides an interesting insight into structural modulation using crystal engineering concept.

8.
Dalton Trans ; 48(36): 13541-13545, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31469147

ABSTRACT

Simultaneously involving abundant [NH2(CH3)2]+ cations and uncoordinated carboxylate oxygen atoms as dual active sites, two microporous CoII-MOFs (LCU-105 and LCU-106, LCU = Liaocheng University) both exhibit highly selective adsorption of CO2/CH4 and CO2/N2. GCMC theoretical simulations provide good verification of the experimental results.

9.
ACS Appl Mater Interfaces ; 11(22): 20104-20109, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31083963

ABSTRACT

Two isostructural nanocage-based porous Ni/Co(II)-MOFs have been hydrothermally synthesized, which were interestingly composed of icosahedron and tetrahedron cages with a new (3,8)-connected 3D topology. Moreover, the stable Ni-MOF exhibits good selective CO2/CH4 and CO2/N2 adsorption owing to its exposed nitrogen active sites.

10.
RSC Adv ; 9(72): 42554-42560, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-35542840

ABSTRACT

Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII 2} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII 2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.

11.
Chem Commun (Camb) ; 53(15): 2394-2397, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28174776

ABSTRACT

Two Fe-based porous MOFs have been constructed from dimeric Fe-clusters and rod-shaped heterobimetallic {Fe2Na3}n chains as SBUs, respectively. Both of them exhibit highly selective CO2 adsorption over CH4 and N2, owing to their abundant multiple active sites.

12.
Huan Jing Ke Xue ; 37(2): 697-702, 2016 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-27363162

ABSTRACT

To reveal the effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating soil zone of three gorge reservoir areas in the Yangtze river tributary during the dry period, surface soils were collected from the water level fluctuating zone of Pengxi river crossing two hydrological sections, i.e., upstream and downstream and three water level altitudes, 155 m (low), 165 m (middle) and 175 m (high). We incubated the soil at 25 degrees C and 35 degrees C to determine the transformation rates of nitrogen in soil of Pengxi river basin during the dry period. The result showed that TN and NO3- -N contents in the soil of upstream section and higher (175 m) altitude of water level were higher than those in downstream and low (165 m) altitude of water level, whereas the pattern for NH4+ -N was different, with higher NH4+ -N contents in downstream and low water level. The inorganic nitrogen was dominated by NO3- -N, which accounted for up to 57.4%-84.7% of inorganic nitrogen. Generally, soil ammoniation, nitration and net N mineralization increased with the rising water level altitude and stream sections (P < 0.05). In summary, nitration and net N mineralization significantly increased with increasing temperature, (P < 0.05), while ammoniation showed no difference (P > 0.05).


Subject(s)
Nitrogen/chemistry , Seasons , Soil/chemistry , Temperature , Water/chemistry , Altitude , China , Rivers
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(4): 1133-8, 2016 Apr.
Article in Chinese | MEDLINE | ID: mdl-30052013

ABSTRACT

Ce doped TiO2 was prepared via sol-gel method. The as-prepared Ce doped TiO2 was impregnated with diluted H2SO4 to obtain a H2SO4-treated Ce doped TiO2. In succession, the characterizations of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), pyridine adsorption-FTIR (Py-FTIR), ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) were carried out to analyze the reasons for the improvement of the light response performance. The visible light photocatalytic degradation of Rhodamine B (RhB) in an aqueous solution was used as a probe reaction to evaluate the photocatalytic activity of the obtained samples. According to the XRD analysis, Ce doping created the lattice defects in TiO2 and minimized the particle size, which promoted the transfer of photo-generated electrons and then improved catalyst activity. The bridged bidentate coordination mode of SO2-4 was proposed based on the FTIR spectra. The pyridine FTIR spectra showed that both Lewis and Brnsted acid sites were formed on the sample surface. The characteristic absorption band as Lewis acid was more intense than that of the Brnsted acid, exhibiting the major Lewis acidity. The presence of the Lewis acid sites resulted in the transfer of photogenerated electrons to the Lewis acid center because of the electron deficiency of the Lewis acid sites, which contributed greatly to the transport of the photogenerated electrons, inhibiting the recombination of the photogenerated electron/hole pairs and leading to the enhancement of the photocatalytic activity of samples. From UV-Vis results, Ce-doping introduced an impurity energy level in the band gap, narrowing the TiO2 band gap. The impurity energy level could capture the photogenerated electrons on the conduct band and photogenerated holes on the valence band, reducing the recombination probability of photogenerated carriers and exciting the electrons captured on the impurity energy band by the photons with lower energy, thus expanding the light response range of TiO2. The XPS results indicated that the doped Ce existed as a mixture of Ce3+/Ce4+ states, which facilitated the efficient separation of the photo-generated electrons and holes because of the electron transfer, enhancing the system's quantum efficiency. The sulfated Ce doped TiO2 catalysts were very active for the visible photocatalytic degradation of RhB. Results showed that the synergetic effects of Ce doping and acid-treatment improved the visible light response for sulfated Ce-doped TiO2, enhancing the visible photocatalytic activity.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(8): 2209-13, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23156783

ABSTRACT

In order to develop the cheap and efficient photocatalysts, kaolins were modified through calcination and acid leaching. In succession, the prepared samples were characterized using thermal gravimetric-differential thermal analysis (TG-DTA), scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis) and BET specific surface area measurements (BET). Methyl orange, used as a model reactant, was degraded under UV light irradiation to evaluate the photocatalytic activities of the prepared samples. From UV-Vis spectroscopy analyses, an obvious increase in the red shift of the absorption edge was observed for the samples treated with acid. The acid sites generated during the modification of kaolin were determined through adsorbed pyridine analysis using infrared spectroscopy (Py-IR). Kaolins modified using over 30% H2SO4 contained both Brönsted and Lewis acid sites. Combining the results of photocatalytic experiment with the conclusions of Py-IR and XRD, the acid properties of the prepared samples were the main factors that affected their catalytic activity.

15.
Oncol Lett ; 2(6): 1291-1295, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22848304

ABSTRACT

Gastric cancer is the second most lethal cancer worldwide. Despite the current surgical and adjuvant therapies, 5-year survival remains less than 20-25% in the US, Europe and China. Therefore, there is an urgent need to identify new therapeutic targets for treating this malignant disease. Accumulating evidence has supported that aberrant activation of the Hedgehog signaling pathway plays a crucial role in tumorigenesis and progression of gastric cancer. Human sulfatase-1 (HSulf-1) is a recently identified enzyme that desulfates cell surface heparan sulfate proteoglycans (HSPGs), which is critical for Hedgehog signal transduction under a highly sulfated state. HSulf-1 has recently emerged as a tumor suppressor gene in certain types of cancer, including ovarian, breast, myeloma and hepatocellular carcinoma; however, its role in gastric cancer remains to be elucidated. Therefore, we established HSulf-1-expressing monoclonal MKN28 gastric cancer cells to investigate its function in gastric cancer. Expression of HSulf-1 significantly suppressed cellular proliferation and growth in MKN28 gastric cancer cells. Notably, HSulf-1 inhibits Gli-mediated transcription and down-regulates the expression of Hedgehog target genes, including GLI1, PTCH1/2, HHIP, CCND1, C-MYC and BCL-2. Collectively, the study provides evidence that HSulf-1 may function as a tumor suppressor in gastric cancer. It suppresses gastric cancer cell proliferation, possibly through abrogating the Hedgehog signaling pathway. The study provides new mechanistic insight into HSulf-1- mediated tumor suppression, and supports the use of HSulf-1 as a potential new therapeutic target in treating gastric cancer.

16.
Int J Biol Markers ; 25(4): 236-42, 2010.
Article in English | MEDLINE | ID: mdl-21161946

ABSTRACT

Cyclin B2 (CCNB2), a member of the cyclin protein family, has been found to be up-regulated in human cancers. To evaluate the potential use of circulating CCNB2 in serum in cancer surveillance, we examined relative expression levels of serum circulating CCNB2 mRNA in 103 cancer patients, 19 normal controls, and 40 benign disease patients using real-time quantitative reverse transcriptase polymerase chain reaction. We found that the relative expression level of circulating CCNB2 mRNA in cancer patients was significantly higher (p<0.0001) than that in normal controls and benign diseases group. Circulating CCNB2 mRNA level was significantly (p<0.001) correlated with cancer stage and metastasis status. Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.87 and 0.83 (p<0.05) in identifying cancer patients' metastasis status in lung and digestive tract cancer, respectively. Moreover, we observed that expression levels of circulating CCNB2 mRNA in cancer patients significantly decreased (p=0.0084) after their therapeutic treatments. These data suggest that detection of serum circulating CCNB2 mRNA may have potential clinical applications in screening and monitoring of metastasis and therapeutic treatments.


Subject(s)
Biomarkers, Tumor/blood , Cyclin B2/blood , Neoplasms/diagnosis , RNA, Messenger/blood , Aged , Case-Control Studies , Cyclin B2/genetics , Digestive System Neoplasms/diagnosis , Digestive System Neoplasms/pathology , Female , Genital Neoplasms, Female/diagnosis , Genital Neoplasms, Female/pathology , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasms/pathology , Transcriptional Activation , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/pathology
17.
Int J Biol Markers ; 25(4)2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21110300

ABSTRACT

Cyclin B2 (CCNB2), a member of the cyclin protein family, has been found to be up-regulated in human cancers. To evaluate the potential use of circulating CCNB2 in serum in cancer surveillance, we examined relative expression levels of serum circulating CCNB2 mRNA in 103 cancer patients, 19 normal controls, and 40 benign disease patients using real-time quantitative reverse transcriptase polymerase chain reaction. We found that the relative expression level of circulating CCNB2 mRNA in cancer patients was significantly higher (p<0.0001) than that in normal controls and benign diseases group. Circulating CCNB2 mRNA level was significantly (p<0.001) correlated with cancer stage and metastasis status. Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.87 and 0.83 (p<0.05) in identifying cancer patients' metastasis status in lung and digestive tract cancer, respectively. Moreover, we observed that expression levels of circulating CCNB2 mRNA in cancer patients significantly decreased (p=0.0084) after their therapeutic treatments. These data suggest that detection of serum circulating CCNB2 mRNA may have potential clinical applications in screening and monitoring of metastasis and therapeutic treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...