Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38565314

ABSTRACT

AIMS: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.


Subject(s)
Candida , Caproates , Esters , Fermentation , Fermented Foods , Caproates/metabolism , Esters/metabolism , Esters/analysis , Fermented Foods/microbiology , Fermented Foods/analysis , Candida/metabolism , Flavoring Agents/metabolism , Food Microbiology , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis
2.
J Biotechnol ; 388: 11-23, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614441

ABSTRACT

Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties. Therefore, it is essential to identify and investigate these acid-producing microorganisms from cellar mud to ensure stable caproic acid synthesis. In this study, a unique strain was isolated from the cellar mud, exhibiting a 98.12 % similarity in its 16 S rRNA sequence and an average nucleotide identity of 79.57 % with the reference specie, together with the DNA-DNA hybridization of 23.20 % similarity, confirming the distinct species boundaries. The strain was able to produce 1.22 ± 0.55 g/L caproic acid from glucose. Through genome sequencing, annotation, and bioinformatics analysis, the complete pathway of caproic acid synthesis from glucose was elucidated, and the catalytic mechanism of the key thiolase for caproic acid synthesis was investigated. These findings provide useful fundamental data for revealing the metabolic properties of caproic acid-producing bacteria found in cellar mud.


Subject(s)
Caproates , Glucose , Glucose/metabolism , Caproates/metabolism , RNA, Ribosomal, 16S/genetics , Fermentation , Phylogeny , Genome, Bacterial/genetics
3.
J Sci Food Agric ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436499

ABSTRACT

BACKGROUND: Baijiu is a well-known alcoholic beverage in China and the quality is determined by various microorganisms during the fermentation process. Yeast is one of the most important microorganisms in the fermentation of baijiu. It has a strong esterification capacity and also affects the aroma. RESULTS: High-throughput sequencing results showed that the fermented grains (jiupei) during baijiu production were mainly composed of eight highly abundant yeast species. The species and abundance of yeasts changed significantly with the fermentation process. The flavor of 30 yeast strains in the jiupei was determined by a sniffing test and gas chromatography-mass spectrometry (GC-MS). The strain with the highest flavor substance content (2.34 mg L-1 ), named YX3205, was identified as Clavispora lusitaniae. Tolerance results showed that C. lusitaniae YX3205 can tolerate up to 15% (v v-1 ) ethanol. In a solid-state simulated fermentation experiment, the content of 24 flavor substances was significantly increased in the fortified group, and the total ester content reached 4240.73 µg kg-1 , which was 2.8 times higher than that of the control group. CONCLUSION: The present study demonstrated the potential of C. lusitaniae YX3205 to enhance the flavor of baijiu, thereby serving as a valuable strain for the improvement of the flavor quality of baijiu. © 2024 Society of Chemical Industry.

4.
J Biosci Bioeng ; 137(5): 360-371, 2024 May.
Article in English | MEDLINE | ID: mdl-38369397

ABSTRACT

The unique cellar fermentation process of Chinese strong-flavor Baijiu is the reason for its characteristic cellar aroma flavor. The types, abundance, community structure and metabolic activity of microorganisms in the pit mud directly affect the microbial balance in the white spirit production environment, promoting the formation of typical aromas and influencing the quality of CFSB. During the production process, the production of off-flavor in the cellar may occur. The aim of this study is to elucidate the differences in microbiota and flavor between normal pit mud and abnormal pit mud (pit mud with off-flavor). A total of 46 major volatile compounds were identified, and 24 bacterial genera and 21 fungal genera were screened. The esters, acids, and alcohols in the abnormal pit mud were lower than those in the normal pit mud, while the aldehydes were higher. 3-Methyl indole, which has been proven to be responsible for the muddy and musty flavors, was detected in both types of pit mud, and for the first time, high levels of 4-methylanisole was detected in the pit mud. The microbial composition of the two types of pit mud showed significant differences in the bacterial genera of Sporosarcina, Lactobacillus, Garciella, Anaerosalibacter, Lentimicrobium, HN-HF0106, Petrimonas, Clostridium_sensu_stricto_12 and Bacillus, and the fungal genera of Millerozyma, Penicillium, Mortierella, Monascus, Saccharomyces, Issatchenkia, Pithoascus, Pseudallescheria, and Wickerhamomyces. Additionally, we speculate that Sporosarcina is the predominant bacterial genus responsible for the imbalance of microbiota in pit mud.


Subject(s)
Microbiota , Odorants , Odorants/analysis , Alcoholic Beverages/analysis , Bacteria/metabolism , Fermentation
5.
Opt Express ; 26(24): 31664-31674, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650750

ABSTRACT

In the past few years, orbital angular momentum (OAM) has aroused great interest in the scientific communities, because it shows great potential for enhancing capacities of radio and optical communication systems. Here, we propose anisotropic metasurfaces to generate multiple OAM vortex beams at microwave frequencies. A phase compensation theory is presented, in order to determine the phase distributions on metasurfaces, This theory enables independent control of beam numbers, polarizations, orientations, and topological charges of OAM vortex beams, respectively. The metasurface is composed of anisotropic elements, whose reflection phases can be engineered separately in different polarization directions. The scheme is validated by both simulation and experimental results and shows great potential for the polarization division multiplexing in OAM communication systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...