Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 202: 105916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879318

ABSTRACT

Lambda-cyhalothrin, a representative pyrethroid insecticide widely used for Spodoptera frugiperda control in China, poses challenges due to the development of resistance. This study investigates the realized heritability, inheritance pattern, cross-resistance, and resistance mechanisms to lambda-cyhalothrin. After 21 generations of selection, the lambda-cyhalothrin-resistant strain (G21) developed a 171.11-fold resistance compared to a relatively susceptible strain (RS-G9), with a realized heritability (h2) of 0.11. Cross-resistance assays revealed that lambda-cyhalothrin-resistant strains showed no significant cross-resistance to the majority of tested insecticides. Genetic analysis indicated that lambda-cyhalothrin resistance in S. frugiperda was autosomal, incompletely dominant, and polygenic inheritance. The P450 enzyme inhibitor PBO significantly enhanced lambda-cyhalothrin toxicity in the resistant strains. Compared with the RS-G9 strain, the P450 enzyme activity was significantly increased and multiple P450 genes were significantly up-regulated in the lambda-cyhalothrin-resistant strains. RNAi targeting the most overexpressed P450 genes (CYP337B5 and CYP321B1) significantly increased the susceptibility of resistant S. frugiperda larvae to lambda-cyhalothrin. This study provides comprehensive insights into lambda-cyhalothrin resistance in S. frugiperda, and the results are helpful for developing effective resistance management strategies of this pest.


Subject(s)
Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spodoptera , Animals , Pyrethrins/pharmacology , Nitriles/pharmacology , Spodoptera/drug effects , Spodoptera/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , RNA Interference , Larva/drug effects , Larva/genetics
2.
NPJ Syst Biol Appl ; 10(1): 5, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218856

ABSTRACT

Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.


Subject(s)
Fluoxetine , Lilium , Mice , Animals , Fluoxetine/pharmacology , Depression/drug therapy , Depression/metabolism , Lilium/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
3.
Article in English | MEDLINE | ID: mdl-36336329

ABSTRACT

Lufenuron is an effective benzoylurea insecticide that inhibits the synthesis of chitin and regulates the growth of insects. However, little is known about the effects of lufenuron treatment on the development of Spodoptera frugiperda (J. E. Smith). In this study, we assessed the toxicity of lufenuron on S. frugiperda and evaluated the effects of lufenuron treatment on the growth and development of S. frugiperda. The results showed that lufenuron exhibits high insecticidal activity against S. frugiperda, with the LC50 value of 0.99 mg L-1. Lufenuron treatments can significantly prolong the larval developmental duration and reduce the rates of pupation and emergence. To further explore the underlying mechanism of this observation, the expression profiles of the chitin synthase gene (SfCHS) and chitinase gene (SfCHT), two key enzyme genes involved in the molting of S. frugiperda, were determined after exposure to lufenuron for 96 h. The results of qRT-PCR demonstrated that lufenuron treatments can significantly reduce the expression of SfCHT, while the expression of SfCHS remained relatively stable. Furthermore, we found that lufenuron strongly interacted with chitinase (SfCHT) (-10.8 kcal/mol) and chitin synthase (SfCHS) (R1: -9.7 kcal/mol; R2: -10.2 kcal/mol). Our results indicated that lufenuron has significant effects on the development of S. frugiperda that might be attributed to the differential expression of SfCHT and SfCHS.


Subject(s)
Chitinases , Insecticides , Animals , Spodoptera/genetics , Chitin Synthase/genetics , Chitinases/genetics , Insecticides/toxicity , Molting
4.
Materials (Basel) ; 12(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694200

ABSTRACT

In this work, a carbon black (VXC-72R)/zirconia (ZrO2) nanocomposite-modified glassy carbon electrode (GCE) was designed, and a VXC-72R/ZrO2/GCE-based electrochemical sensor was successfully fabricated for the high-sensitivity detection of methyl parathion (MP). Electrochemical measurements showed that the VXC-72R/ZrO2/GCE-based electrochemical sensor could make full use of the respective advantages of the VXC-72R and ZrO2 nanoparticles to enhance the MP determination performance. The VXC-72R nanoparticles had high electrical conductivity and a large surface area, and the ZrO2 nanoparticles possessed a strong affinity to phosphorus groups, which could achieve good organophosphorus adsorption. On the basis of the synergistic effect generated from the interaction between the VXC-72R and ZrO2 nanoparticles, the VXC-72R/ZrO2/GCE-based electrochemical sensor could show excellent trace analysis determination performance. The low detection limit could reach up to 0.053 µM, and there was a linear concentration range of 1 µM to 100 µM. Such a high performance indicates that the VXC-72R/ZrO2/GCE-based electrochemical sensor has potential in numerous foreground applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...