Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Foods ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761186

ABSTRACT

Canned bamboo shoots in clear water could produce a unique flavor through bacterial diversity via the fermentation process. Weissella, Streptococcus, Leuconostoc, Acinetobacter, Lactococcus and Lactobacillus were the main microorganisms. Tyrosine was the most abundant free amino acid (FAA), which had a negative correlation with Lactococcus. Ten kinds of flavor substances, such as 3-methyl-1-butanol, acetic acid, 2-phenylethyl ester, benzene acetaldehyde, benzoic acid and ethyl ester, were important influential factors in the flavor of fermented bamboo shoots. Through the verification test of tyrosine and phenylalanine decarboxylase, it was found that Lactococcus lactis TJJ2 could decompose tyrosine and phenylalanine to produce benzaldehyde and benzene acetaldehyde, which provided the fermented bamboo shoots with a grassy aroma.

2.
Hortic Res ; 10(2): uhac259, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37601702

ABSTRACT

Mango (Mangifera indica L.) is an important fruit crop in tropical and subtropical countries associated with many agronomic and horticultural problems, such as susceptibility to pathogens, including powdery mildew and anthracnose, poor yield and quality, and short shelf life. Conventional breeding techniques exhibit significant limitations in improving mango quality due to the characteristics of long ripening, self-incompatibility, and high genetic heterozygosity. In recent years, much emphasis has been placed on identification of key genes controlling a certain trait through genomic association analysis and directly breeding new varieties through transgene or genotype selection of offspring. This paper reviews the latest research progress on the genome and transcriptome sequencing of mango fruit. The rapid development of genome sequencing and bioinformatics provides effective strategies for identifying, labeling, cloning, and manipulating many genes related to economically important traits. Preliminary verification of the functions of mango genes has been conducted, including genes related to flowering regulation, fruit development, and polyphenol biosynthesis. Importantly, modern biotechnology can refine existing mango varieties to meet the market demand with high economic benefits.

3.
BMC Plant Biol ; 23(1): 361, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454071

ABSTRACT

BACKGROUND: Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed. RESULTS: A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color. CONCLUSIONS: Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.


Subject(s)
Flavonoids , Vitis , Flavonoids/metabolism , Vitis/genetics , Vitis/metabolism , Anthocyanins/metabolism , Transcriptome , Plant Breeding , Metabolome , Gene Expression Regulation, Plant , Fruit/metabolism
4.
BMC Plant Biol ; 23(1): 320, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316788

ABSTRACT

BACKGROUND: The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS: In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS: Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.


Subject(s)
Ficus , Polygalacturonase , Polygalacturonase/genetics , Ficus/genetics , Fruit/genetics , Hydrolases
5.
Nutrients ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049564

ABSTRACT

To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.


Subject(s)
Glucose , Lipid Metabolism , Animals , Glucose/metabolism , Caenorhabditis elegans/metabolism , Verrucomicrobia , Lipids
6.
Foods ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37107423

ABSTRACT

The probiotic role of lactic acid bacteria (LAB) in regulating intestinal microbiota to promote human health has been widely reported. However, the types and quantities of probiotics used in practice are still limited. Therefore, isolating and screening LAB with potential probiotic functions from various habitats has become a hot topic. In this study, 104 strains of LAB were isolated from and identified in traditionally fermented vegetables, fresh milk, healthy infant feces, and other environments. The antibacterial properties-resistance to acid, bile salts, and digestive enzymes-and adhesion ability of the strains were determined, and the biological safety of LAB with better performance was studied. Three LAB with good comprehensive performance were obtained. These bacteria had broad-spectrum antibacterial properties and good acid resistance and adhesion ability. They exhibited some tolerance to pig bile salt, pepsin, and trypsin and showed no hemolysis. They were sensitive to the selected antibiotics, which met the required characteristics and safety evaluation criteria for probiotics. An in vitro fermentation experiment and milk fermentation performance test of Lactobacillus rhamnosus (L. rhamnosus) M3 (1) were carried out to study its effect on the intestinal flora and fermentation performance in patients with inflammatory bowel disease (IBD). Studies have shown that this strain can effectively inhibit the growth of harmful microorganisms and produce a classic, pleasant flavor. It has probiotic potential and is expected to be used as a microecological agent to regulate intestinal flora and promote intestinal health. It can also be used as an auxiliary starter to enhance the probiotic value of fermented milk.

7.
Front Plant Sci ; 14: 1141470, 2023.
Article in English | MEDLINE | ID: mdl-37077648

ABSTRACT

With the development of globalization and agriculture trade, as well as its own strong migratory capacity, fall armyworm (FAW) (Spodoptera frugiperda) (J.E. Smith) has invaded more than 70 countries, posing a serious threat to the production of major crops in these areas. FAW has now also been detected in Egypt in North Africa, putting Europe, which is separated from it only by the Mediterranean Sea, at high risk of invasion. Therefore, this study integrated multiple factors of insect source, host plant, and environment to provide a risk analysis of the potential trajectories and time periods of migration of FAW into Europe in 2016~2022. First, the CLIMEX model was used to predict the annual and seasonal suitable distribution of FAW. The HYSPLIT numerical trajectory model was then used to simulate the possibility of the FAW invasion of Europe through wind-driven dispersal. The results showed that the risk of FAW invasion between years was highly consistent (P<0.001). Coastal areas were most suitable for the expansion of the FAW, and Spain and Italy had the highest risk of invasion, with 39.08% and 32.20% of effective landing points respectively. Dynamic migration prediction based on spatio-temporal data can enable early warning of FAW, which is important for joint multinational pest management and crop protection.

8.
Front Plant Sci ; 13: 1040796, 2022.
Article in English | MEDLINE | ID: mdl-36388580

ABSTRACT

Fig fruits have significant health value and are culturally important. Under suitable climatic conditions, fig fruits undergo a superfast ripening process, nearly doubling in size, weight, and sugar content over three days in parallel with a sharp decrease in firmness. In this study, 119 FcAP2/ERF genes were identified in the fig genome, namely 95 ERFs, 20 AP2s, three RAVs, and one soloist. Most of the ERF subfamily members (76) contained no introns, whereas the majority of the AP2 subfamily members had at least two introns each. Three previously published transcriptome datasets were mined to discover expression patterns, encompassing the fruit peel and flesh of the 'Purple Peel' cultivar at six developmental stages; the fruit receptacle and flesh of the 'Brown Turkey' cultivar after ethephon treatment; and the receptacle and flesh of parthenocarpic and pollinated fruits of the 'Brown Turkey' cultivar. Eighty-three FcAP2/ERFs (68 ERFs, 13 AP2s, one RAV, and one soloist) were expressed in the combined transcriptome dataset. Most FcAP2/ERFs were significantly downregulated (|log2(fold change) | ≥ 1 and p-adjust < 0.05) during both normal fruit development and ethephon-induced accelerated ripening, suggesting a repressive role of these genes in fruit ripening. Five significantly downregulated ERFs also had repression domains in the C-terminal. Seven FcAP2/ERFs were identified as differentially expressed during ripening in all three transcriptome datasets. These genes were strong candidates for future functional genetic studies to elucidate the major FcAP2/ERF regulators of the superfast fig fruit ripening process.

9.
Front Plant Sci ; 13: 1004427, 2022.
Article in English | MEDLINE | ID: mdl-36212329

ABSTRACT

Infection caused by Fusarium head blight (FHB) has severely damaged the quality and yield of wheat in China and threatened the health of humans and livestock. Inaccurate disease detection increases the use cost of pesticide and pollutes farmland, highlighting the need for FHB detection in wheat fields. The combination of spectral and spatial information provided by image analysis facilitates the detection of infection-related damage in crops. In this study, an effective detection method for wheat FHB based on unmanned aerial vehicle (UAV) hyperspectral images was explored by fusing spectral features and image features. Spectral features mainly refer to band features, and image features mainly include texture and color features. Our aim was to explain all aspects of wheat infection through multi-class feature fusion and to find the best FHB detection method for field wheat combining current advanced algorithms. We first evaluated the quality of the two acquired UAV images and eliminated the excessively noisy bands in the images. Then, the spectral features, texture features, and color features in the images were extracted. The random forest (RF) algorithm was used to optimize features, and the importance value of the features determined whether the features were retained. Feature combinations included spectral features, spectral and texture features fusion, and the fusion of spectral, texture, and color features to combine support vector machine, RF, and back propagation neural network in constructing wheat FHB detection models. The results showed that the model based on the fusion of spectral, texture, and color features using the RF algorithm achieved the best performance, with a prediction accuracy of 85%. The method proposed in this study may provide an effective way of FHB detection in field wheat.

10.
Foods ; 11(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36076800

ABSTRACT

Vitis davidii Foex whole seed (VWS) is a by-product during the processing of grape products, which is rich in bioactive compounds that have great potential in the food industry. In this study, the bioactive compounds and antioxidant activity of VWS were determined, and their dynamic changes during in vitro colonic fermentation were also investigated after VWS subjected to in vitro simulated digestion. Results showed that VWS were rich in polyphenols (23.67 ± 0.52 mg GAE/g), flavonoids (13.13 ± 1.22 mg RE/g), and proanthocyanidins (8.36 ± 0.14 mg CE/g). It also had good DPPH and ABTS radical scavenging activity, which reached 82.10% and 76.10% at 1000 µg/mL. The alteration trend of the antioxidant activity during in vitro fermentation for 24 h was consistent with that of the content of bioactive substances, such as polyphenols, with the extension of fermentation time. The bioactive compounds and antioxidant activity showed a trend of increasing and then decreasing, reaching the highest value at 8 h. The high-throughput sequencing analysis of the regulatory effect of VWS on intestinal micro-organisms revealed that VWS influenced intestinal microbiota diversity. The relative abundance of beneficial microbiota, such as Blautia and Parabacteroides, increased by 4.1- and 1.65-fold after 24 h of fermentation compared with that of the control group. It also reduced Escherichia-Shigella by 11.23% and effectively reduced host inflammation, while increasing the contents of acetic acid, propionic acid, and other metabolites. Taken together, these results reveal the value of VWS utilization and provide new insights into the nutritional and microbiota modulation effects of VWS, which could therefore serve as a nutraceutical ingredient in health promotion.

11.
Front Plant Sci ; 13: 979348, 2022.
Article in English | MEDLINE | ID: mdl-36061806

ABSTRACT

Insects and animals are attracted to, and feed on ripe fruit, thereby promoting seed dispersal. As a vital vitamin and nutrient source, fruit make up an indispensable and enjoyable component of the human diet. Fruit ripening involves a series of physiological and biochemical changes in, among others, pigmentation, chlorophyll (Chl) degradation, texture, sugar accumulation, and flavor. Growing evidence indicates that the coordinated and ordered trait changes during fruit ripening depend on a complex regulatory network consisting of transcription factors, co-regulators, hormonal signals, and epigenetic modifications. As one of the predominant transcription factor families in plants and a downstream component of ethylene signaling, more and more studies are showing that APETALA2/ethylene responsive factor (AP2/ERF) family transcription factors act as critical regulators in fruit ripening. In this review, we focus on the regulatory mechanisms of AP2/ERFs in fruit ripening, and in particular the recent results on their target genes and co-regulators. We summarize and discuss the role of AP2/ERFs in the formation of key fruit-ripening attributes, the enactment of their regulatory mechanisms by interaction with other proteins, their role in the orchestration of phytohormone-signaling networks, and the epigenetic modifications associated with their gene expression. Our aim is to provide a multidimensional perspective on the regulatory mechanisms of AP2/ERFs in fruit ripening, and a reference for understanding and furthering research on the roles of AP2/ERF in fruit ripening.

12.
Front Plant Sci ; 13: 948084, 2022.
Article in English | MEDLINE | ID: mdl-35909733

ABSTRACT

WD40 proteins serve as crucial regulators in a broad spectrum of plant developmental and physiological processes, including anthocyanin biosynthesis. However, in fig (Ficus carica L.), neither the WD40 family nor any member involved in anthocyanin biosynthesis has been elucidated. In the present study, 204 WD40 genes were identified from the fig genome and phylogenetically classified into 5 clusters and 12 subfamilies. Bioinformatics analysis prediction localized 109, 69, and 26 FcWD40 proteins to the cytoplasm, nucleus and other cellular compartments, respectively. RNA-seq data mining revealed 127 FcWD40s expressed at FPKM > 10 in fig fruit. Most of these genes demonstrated higher expression in the early stages of fruit development. FcWD40-97 was recruited according to three criteria: high expression in fig fruit, predicted nuclear localization, and closest clustering with TTG1s identified in other plants. FcWD40-97, encoding 339 amino acids including 5 WD-repeat motifs, showed 88.01 and 87.94% amino acid sequence similarity to apple and peach TTG1, respectively. The gene is located on fig chromosome 4, and is composed of 1 intron and 2 exons. Promoter analysis revealed multiple light-responsive elements, one salicylic acid-responsive element, three methyl jasmonate-responsive elements, and one MYB-binding site involved in flavonoid biosynthesis gene regulation. FcWD40-97 was in the FPKM > 100 expression level group in fig fruit, and higher expression was consistently found in the peel compared to the flesh at the same development stages. Expression level did not change significantly under light deprivation, whereas in leaves and roots, its expression was relatively low. Transient expression verified FcWD40-97's localization to the nucleus. Yeast two-hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays revealed that FcWD40-97 interacts with FcMYB114, FcMYB123, and FcbHLH42 proteins in vitro and in vivo, showing that FcWD40-97 functions as a member of the MYB-bHLH-WD40 (MBW) complex in anthocyanin-biosynthesis regulation in fig. We therefore renamed FcWD40-97 as FcTTG1. Our results provide the first systematic analysis of the FcWD40 family and identification of FcTTG1 in fig pigmentation.

13.
PeerJ ; 10: e13798, 2022.
Article in English | MEDLINE | ID: mdl-35898939

ABSTRACT

The auxin response factor (ARF) combines with AuxREs cis-acting elements in response to auxin to regulate plant development. To date, no comprehensive analysis of ARF genes expressed during fruit development has been conducted for common fig (Ficus carica L.). In this study, members of the FcARF gene family were screened, identified in the fig genome database and their features characterized using bioinformatics. Twenty FcARF genes were clustered into three classes, with almost similar highly conserved DBD (B3-like DNA binding domain), AUX/IAA (auxin/indole-3-acetic acid gene family) and MR domain structure among class members. Analysis of amino acid species in MR domain revealed 10 potential transcription activators and 10 transcription inhibitors, and 17 FcARF members were predicted to be located in the nucleus. DNA sequence analysis showed that the ARF gene family consisted of 4-25 exons, and the promoter region contained 16 cis-acting elements involved in stress response, hormone response and flavonoid biosynthesis. ARF genes were expressed in most tissues of fig, especially flower and peel. Transcriptomics analysis results showed that FcARF2, FcARF11 and FcARF12, belonging to class-Ia, were stably and highly expressed in the early development stage of flower and peel of 'Purple peel' fig. However, their expression levels decreased after maturity. Expression of class-Ic member FcARF3 conformed to the regularity of fig fruit development. These four potential transcription inhibitors may regulate fruit growth and development of 'Purple Peel' fig. This study provides comprehensive information on the fig ARF gene family, including gene structure, chromosome position, phylogenetic relationship and expression pattern. Our work provides a foundation for further research on auxin-mediated fig fruit development.


Subject(s)
Ficus , Ficus/genetics , Fruit/genetics , Phylogeny , Indoleacetic Acids/metabolism , Gene Expression Profiling
14.
Mitochondrial DNA B Resour ; 7(6): 1032-1034, 2022.
Article in English | MEDLINE | ID: mdl-35756453

ABSTRACT

Plator insolens Simon, 1880 belongs to the family Trochanteriidae and is distributed in China. Herein, we report the complete mitochondrial genome of P. insolens reconstructed from Illumina sequencing data, which is the first published mitochondrial genome for the family. The mitogenome is 14,519 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. The phylogenetic analysis indicates that P. insolens is clustered within the RTA clade of the infraorder Araneomorphae. This study provides useful genetic information for future studies on the taxonomy, phylogeny and evolution of trochanteriid species.

15.
Biodivers Data J ; 10: e81849, 2022.
Article in English | MEDLINE | ID: mdl-35586259

ABSTRACT

Background: The myriapod fauna of China is still poorly known and very little attention has been paid to the study of Lithobiomorpha, with only more 100 species/subspecies hitherto known from the country, amongst which are only three species of Validifemur. Here we are describing a new species from northwest China. New information: A new lithobiid species, Validifemurradispinipes sp. n., is described and illustrated from Wolong Mountain Park, Jingyuan County, Guyuan City, Ningxia Hui Autonomous Region, northwest China. The new species is compared with V.pedodontus Ma, Song & Zhu, 2007 from Shaanxi Province, China. Type specimens are deposited in the Institute of Myriapodology, School of Life Sciences, Hengshui University, Hengshui, China.

16.
BMC Genomics ; 23(1): 170, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236292

ABSTRACT

BACKGROUND: Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS: In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS: This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.


Subject(s)
Ficus , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Ficus/genetics , Ficus/metabolism , Fruit , Gene Expression Regulation, Plant , Hormones/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Plant Cell Physiol ; 63(6): 785-801, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35348748

ABSTRACT

Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.


Subject(s)
Ficus , Proteome , Ficus/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Proteomics , Vacuoles/metabolism
18.
Physiol Plant ; 174(1): e13648, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35150009

ABSTRACT

Female fig (Ficus carica L.) fruit are characterized by a major increase in volume and sugar content during the final week of development. A detailed developmental analysis of water and dry matter accumulation during these final days indicated a temporal separation between the increase in volume due to increasing water content and a subsequent sharp increase in sugar content during a few days. The results present fig as an extreme example of sugar import and accumulation, with calculated import rates that are one order of magnitude higher than those of other sugar-accumulating sweet fruit species. To shed light on the metabolic changes occurring during this period, we followed the expression pattern of 80 genes encoding sugar metabolism enzymes and sugar transporter proteins identified in fig fruit. A parallel comparison with male fig fruits, which do not accumulate sugar during ripening, highlighted the genes specifically related to sugar accumulation. Tissue-specific analysis indicated that the expression of genes involved in sugar metabolism and transport undergoes a global transition.


Subject(s)
Ficus , Ficus/genetics , Ficus/metabolism , Fruit/metabolism , Gene Expression , Gene Expression Regulation, Plant , Sugars/metabolism
19.
Front Plant Sci ; 12: 755358, 2021.
Article in English | MEDLINE | ID: mdl-34745187

ABSTRACT

Fig is an ancient gynodioecious fruit tree with females for commercial fruit production and hermaphrodites (males) sometimes used as pollen providers. An early sex-identification method would improve breeding efficiency. Three AGAMOUS (AG) genes were recruited from the Ficus carica genome using AG sequences from Ficus microcarpa and Ficus hispida. FcAG was 5230 bp in length, with 7 exons and 6 introns, and a 744-bp coding sequence. The gene was present in both female and male fig genomes, with a 15-bp deletion in the 7th exon. The other two AG genes (FcAG2-Gall_Stamen and FcAG3-Gall_Stamen) were male-specific, without the 15-bp deletion (759-bp coding sequence), and were only expressed in the gall and stamen of the male fig fruit. Using the deletion as the forward primer (AG-Marker), male plants were very efficiently identified by the presence of a 146-bp PCR product. The previously reported fig male and female polymorphism gene RESPONSIVE-TO-ANTAGONIST1 (RAN1) was also cloned and compared between male and female plants. Fifteen SNPs were found in the 3015-bp protein-coding sequence. Among them, 12 SNPs were identified as having sex-differentiating capacity by checking the sequences of 27 known male and 24 known female cultivars. A RAN1-Marker of 608 bp, including 6 SNPs, was designed, and a PCR and sequencing-based method was verified with 352 fig seedlings from two hybrid populations. Our results confirmed that the newly established AG-Marker is as accurate as the RAN1-Marker, and provide new clues to understanding Ficus sex determination.

20.
ACS Appl Mater Interfaces ; 13(48): 57214-57229, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34806874

ABSTRACT

Recently, photoassisted charging has been demonstrated as a green and sustainable approach to successfully enhance the capacitance of supercapacitors with low cost and good efficiency. However, their light-induced capacitance enhancement is relatively low and is lost quickly when the illumination is off. In this work, a novel active material system is developed for supercapacitors with the photoassisted charging capability by the decoration of a small amount of Bi2WO6 nanoparticles on an h-WO3 submicron rod surface in situ, which forms a typical type II band alignment heterostructure with a close contact interface through the co-sharing of W atoms between h-WO3 submicron rods and Bi2WO6 nanoparticles. The photogenerated charge carrier separation and transfer are largely enhanced in the h-WO3/Bi2WO6 submicron rod electrode, which subsequently allows more charge carriers to participate in its photoassisted charging process to largely enhance its capacitance improvement under simulated solar illumination than that of the h-WO3 submicron rod electrode. Furthermore, the h-WO3/Bi2WO6 submicron rod electrode could retain its photoinduced capacitance enhancement in the dark for an extended period of time from the photocatalytic memory effect. Thus, our work provides a solution to the two major drawbacks of reported supercapacitors with the light-induced capacitance enhancement property, and supercapacitors based on active materials with the photocatalytic memory effect could be utilized in various technical fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...