Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38869588

ABSTRACT

Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing immense potential in CGM systems. However, the developed PNCs cannot disperse in physiological environment at the pH of 7.4 because of their poor hydrophilicity. In this study, we report a new kind of PNCs that can continuously and reversibly detect the concentration of glucose (Cg) in physiological environment at the pH of 7.4. Polyacrylic acid (PAA) added to the preparation of PNCs forms hydrogen bonds with polyvinylpyrrolidone (PVP) in Fe3O4@PVP colloidal nanoparticles and the hydrophilic monomer N-2-hydroxyethyl acrylamide (HEAAm), which increases the content of PHEAAm in the polymer shell of prepared PNCs. Moreover, 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA), with a relatively low pKa value, is used as the glucose-sensing monomer to further improve the hydrophilicity and glucose-sensing performances of PNCs. The obtained Fe3O4@(PVP-PAA)@poly(AFPBA-co-HEAAm) PNCs disperse in artificial serum and change color from yellow-green to red when Cg increases from 3.9 mM to 11.4 mM, showing application potential for straightforward CGM.

2.
Polymers (Basel) ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891476

ABSTRACT

Responsive photonic crystal hydrogel sensors are renowned for their colorimetric sensing ability and can be utilized in many fields such as medical diagnosis, environmental detection, food safety, and industrial production. Previously, our group invented responsive photonic nanochains (RPNCs), which improve the response speed of photonic crystal hydrogel sensors by at least 2 to 3 orders of magnitude. However, RPNCs are dispersed in a liquid medium, which needs a magnetic field to orient them for the generation of structural colors. In addition, during repeated use, the process of cleaning and redispersing can cause entanglement, breakage, and a loss of RPNCs, resulting in poor stability. Moreover, when mixing with the samples in liquid, the RPNCs may lead to the contamination of the samples being tested. In this paper, we incorporate one-dimensional oriented RPNCs with agarose gel film to prepare heterogeneous hydrogel films. Thanks to the non-responsive and porous nature of the agarose gel, the protons diffuse freely in the gel, which facilitates the fast response of the RPNCs. Furthermore, the "frozen" RPNCs in agarose gel not only enable the display of structural colors without the need for a magnet but also improve the cycling stability and long-term durability of the sensor, and will not contaminate the samples. This work paves the way for the application of photonic crystal sensors.

3.
Adv Sci (Weinh) ; : e2401711, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868929

ABSTRACT

Individual differences in size, experience, and task specialization in natural swarms often result in heterogeneity and hierarchy, facilitating efficient and coordinated task accomplishment. Drawing inspiration from this phenomenon, a general strategy is proposed for organizing magnetic micro/nanorobots (MNRs) with apparent differences in size, shape, and properties into cohesive microswarms with tunable heterogeneity, controlled spatial hierarchy, and collaborative tasking capability. In this strategy, disparate magnetic MNRs can be manipulated to show reversible transitions between synchronization and desynchronization by elaborately regulating parameter sets of the rotating magnetic field. Utilizing these transitions, alongside local robust hydrodynamic interactions, diverse heterospecific pairings of disparate magnetic MNRs can be organized into heterogeneous microswarms, and their spatial organization can be dynamically adjusted from egalitarian to leader-follower-like hierarchies on the fly, both in open space and complex microchannels. Furthermore, when specializing the disparate MNRs with distinct functions ("division of labor") such as sensing and drug carrying, they can execute precise drug delivery targeting unknown sites in a collaborative sensing-navigating-cargo dropping sequence, demonstrating significant potential for precise tumor treatment. These findings highlight the critical roles of attribute differences and hierarchical organization in designing efficient swarming micro/nanorobots for biomedical applications.

4.
Nano Lett ; 24(20): 5958-5967, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738749

ABSTRACT

Micro/nanorobots hold the potential to revolutionize biomedicine by executing diverse tasks in hard-to-reach biological environments. Nevertheless, achieving precise drug delivery to unknown disease sites using swarming micro/nanorobots remains a significant challenge. Here we develop a heterogeneous swarm comprising sensing microrobots (sensor-bots) and drug-carrying microrobots (carrier-bots) with collaborative tasking capabilities for precise drug delivery toward unknown sites. Leveraging robust interspecific hydrodynamic interactions, the sensor-bots and carrier-bots spontaneously synchronize and self-organize into stable heterogeneous microswarms. Given that the sensor-bots can create real-time pH maps employing pH-responsive structural-color changes and the doxorubicin-loaded carrier-bots exhibit selective adhesion to acidic targets via pH-responsive charge reversal, the sensor-carrier microswarm, when exploring unknown environments, can detect and localize uncharted acidic targets, guide itself to cover the area, and finally deploy therapeutic carrier-bots precisely there. This versatile platform holds promise for treating diseases with localized acidosis and inspires future theranostic microsystems with expandability, task flexibility, and high efficiency.


Subject(s)
Doxorubicin , Drug Delivery Systems , Doxorubicin/chemistry , Doxorubicin/pharmacology , Hydrogen-Ion Concentration , Acidosis , Humans , Drug Carriers/chemistry , Robotics
5.
Nanomaterials (Basel) ; 13(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37836273

ABSTRACT

Double bandgap photonic crystals (PCs) exhibit significant potential for applications in various color display-related fields. However, they show low color saturation and inadequate color modulation capabilities. This study presents a viable approach to the fabrication of double bandgap photonic inks diffracting typical secondary colors and other composite colors by simply mixing two photonic nanochains (PNCs) of different primary colors as pigments in an appropriate percentage following the conventional RGB color matching method. In this approach, the PNCs are magnetically responsive and display three primary colors that can be synthesized by combining hydrogen bond-guided and magnetic field (H)-assisted template polymerization. The as-prepared double bandgap photonic inks present high color saturation due to the fixed and narrow full-width at half-maxima of the parent PNCs with a suitable chain length. Furthermore, they can be used to easily produce a flexible double bandgap PC film by embedding the PNCs into a gel, such as polyacrylamide, facilitating fast steady display performance without the requirement of an external magnetic field. This research not only presents the unique advantages of PNCs in constructing multi-bandgap PCs but also establishes the feasibility of utilizing PNCs in practical applications within the fields of anti-counterfeiting and flexible wearable devices.

6.
ACS Nano ; 17(17): 16731-16742, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37651715

ABSTRACT

Micro-/nanorobots (MNRs) are envisioned to act as "motile-targeting" platforms for biomedical tasks due to their ability to propel and navigate in challenging, hard-to-reach biological environments. However, it remains a great challenge for current swarming MNRs to accurately report and regulate therapeutic doses during disease treatment. Here we present the development of swarming multifunctional heater-thermometer nanorobots (HT-NRs) and their application in precise feedback photothermal hyperthermia delivery. The HT-NRs are designed as photothermal-responsive photonic nanochains consisting of magnetic Fe3O4 nanoparticles arranged periodically in one dimension and encapsulated in a temperature-responsive hydrogel shell. The HT-NRs exhibit energetic and controllable swarming motions under a rotating magnetic field, while simultaneously functioning as motile nanoheaters and nanothermometers, utilizing their photothermal conversion and (photo)thermal-responsive structural color changes (photothermochromism). Consequently, the HT-NRs can be quickly deployed to a remote target area (e.g., a superficial tumor lesion) using their collective motion and selectively eliminate diseased cells in a specific targeted region by utilizing their self-reporting photothermochromism as visual feedback for precisely regulating external light irradiation. This work may inspire the development of intelligent multifunctional theranostic micro-/nanorobots and their practical applications in precise disease treatment.


Subject(s)
Hyperthermia, Induced , Thermometers , Feedback , Temperature , Hydrogels
7.
Nanomicro Lett ; 15(1): 141, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37247162

ABSTRACT

Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.

8.
Mater Horiz ; 10(6): 2004-2012, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37000535

ABSTRACT

Thermochromic hydrogels are versatile smart materials that have many applications, including in smart windows, sensing, camouflage, etc. The previous reports of hydrogel smart windows have been based on covalent crosslinking, requiring multistep processing, and complicated preparation. Moreover, most research studies focused on enhancing the luminous transmittance (Tlum) and modulating ability (ΔTsol), while the structural integrity and antifreezing ability, which are essential in practical applications, have been compromised and rarely investigated. Herein, we develop a new physical (noncovalent crosslinked) hydrogel-derived smart window by introducing an in situ free radical polymerization (FRP) of N-isopropylacrylamide (NIPAM) in a glycerol-water (GW) binary solvent system. The noncovalent crosslinked PNIPAM GW solutions are facilely synthesized, giving outstanding freezing tolerance (∼-18 °C), a comparably high Tlum of 90%, and ΔTsol of 60.8%, together with added advantages of fast response time (∼10 s) and good structural integrity before and after phase transition. This work could provide a new strategy to design and fabricate heat stimulated smart hydrogels not limited to energy saving smart windows.

9.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683723

ABSTRACT

The rapid and robust response to external stimulus with a large volume deformation is of huge importance for the practical application of thermo-responsive photonic crystal film (TRPCF) in actuators, colorimetric sensors, and other color-related fields. Generally, decreasing the size of thermo-responsive photonic crystals and introducing micropores are considered to be two effective approaches to improve their responsiveness. However, they usually result in a poor mechanical property, which leads to optical instability. To solve these problems, a heterogeneous thermo-responsive photonic crystal film was developed here by integrating a thermosensitive hydrogel matrix poly(N-isopropylacrylamide-co-N-methylolacrylamide) (P(NIPAM-co-NHMA)) with high-modulus, but non-thermosensitive poly(acrylic acid -co-2-hydroxyethyl methacrylate (P(AA-co-HEMA)) hydrogel-based photonic nanochains (PNCs). The as-obtained TRPCF based on PNCs (TRPCF-PNC) well combined the rapid response and improved the mechanical property. Typically, it can complete a response within 12 s from 26 to 44 °C, which was accompanied by a larger deformation of the matrix than that of the PNCs. The unique rapid thermochromic mechanism of the TRPCF-PNC is revealed here. Furthermore, it exhibits a high tensible property along the PNC-orientation direction and excellent optical stability. The response time of the TRPCF-PNC can conveniently modulate by changing the cross-linking degree of the PNCs or the content of the thermosensitive component in the matrix. The heterogeneous TRPCF-PNC is believed to have potential applications in artificial muscle and quick-response actuation devices.

10.
Small ; 18(21): e2200662, 2022 May.
Article in English | MEDLINE | ID: mdl-35460197

ABSTRACT

Magnetic photonic crystals (PCs) possess attractive magnetic orientation, flexible pattern designability, and abundant angle-dependent colors, providing immense potential in anticounterfeiting field. However, all-solid magnetic PCs-based labels generally suffer from incompatibility with screen printing techniques, and inferior environmental endurance and mechanical properties. Herein, by developing a selective concentration polymerization method under magnetic field (H) in microheterogenous dimethyl sulfoxide-water binary solvents, individual tens-of-micrometer-length lipophilic magnetic photonic nanochains (PNCs) of full-width at half-maxima below 30 nm are fabricated, which, after simply dispersed in solvent-free cycloaliphatic epoxy resin, can be formulated as photonic inks to print robust anticounterfeiting labels through an H-assisted screen-printing technology. The as-printed labels possess vivid optically variable effects (OVEs) associated with the spatial distribution of H directionality, which are easy to identify by the naked eye but difficult to imitate and duplicate, while they show excellent environmental resistance and mechanical properties, promising practical applications in banknotes and high-grade commodities. The polymerization mechanism of the lipophilic PNCs is elucidated, and the OVEs are deciphered in numerical simulation. Besides an efficient way to build organic-inorganic hybrid nanostructures, the work provides advanced structural color pigments to achieve the practical application of magnetic PCs in such an anticounterfeiting field.

11.
Adv Sci (Weinh) ; 9(9): e2105239, 2022 03.
Article in English | MEDLINE | ID: mdl-35098704

ABSTRACT

Glucose-sensing photonic crystals are promising for the significant advance of continuous glucose monitoring systems due to the naked-eye colorimetric readouts and noninvasive detection of diabetes, but the long response time hampers their practical applications. Here, for the first time probes of photonic nanochains (PNCs) are demonstrated that are capable of continuously and reversibly sensing glucose concentration ([glucose]) variation within seconds by color change without power consumption, much faster by 2-3 orders of magnitude than previous ones. They are comprised of 1D equidistant arrays of magnetic nanoparticles enveloped by tens-of-nanometer-thick phenylboronic acid-functionalized hydrogels, and fabricated by developing selective concentration polymerization of monomers in binary microheterogeneous solvents of dimethyl sulfoxide (DMSO) and H2 O. In this process, both 3-acrylamido phenylboronic acid (AAPBA) and N-2-hydroxyethyl acrylamide (HEAAm) are preferentially dissolved in the small volume of free DMSO concentrated in the vicinity of poly vinylpyrrolidone coated Fe3 O4 colloidal nanoparticles (Fe3 O4 @PVP), yielding Fe3 O4 @PVP@poly(AAPBA-co-HEAAm) PNCs after UV irradiation under magnetic field. The PNCs in phosphate buffered solution have a wavelength-shift range up to 130 nm when [glucose] changes from 0 to 20 × 10-3 m. The results can facilitate real-time glucose monitoring and provide an alternative to produce functional organic-inorganic nanostructures.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Colorimetry/methods , Glucose/chemistry , Hydrogels/chemistry
12.
Mater Horiz ; 8(7): 2032-2040, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34846480

ABSTRACT

Responsive chromic materials are highly desirable in the fields of displays, anti-counterfeiting, and camouflage, but their advanced applications are usually limited by the unrealized delicate and independent tunability of their three intrinsic attributes of color. This work achieves the separate, continuous, and reversible modulation of structural color brightness and hue with an aqueous suspension of dual-responsive Fe3O4@polyvinylpyrrolidone (PVP)@poly(N-isopropyl acrylamide) (PNIPAM) flexible photonic nanochains. The underlying modulation mechanism of color brightness was experimentally and numerically deciphered by analyzing the morphological responses to stimuli. When an increasing magnetic field was applied, the random worm-like flexible photonic nanochains gradually orientated along the field direction, due to the dominant magnetic dipole interaction over the thermal motion, lengthening the orientation segment length up to the whole of the nanochains. Consequently, the suspension displays increased color brightness (characterized by diffraction intensity). Meanwhile, the color hue (characterized by diffraction frequency) could be controlled by temperature, due to the volume changes of the interparticle PNIPAM. The achieved diverse color modulation advances the next-generation responsive chromic materials and enriches the basic understanding of the color tuning mechanisms. With versatile and facile color tunability and shape patterning, the developed responsive chromic liquid promises to have attractive potential in full-color displays and in adaptive camouflages.

13.
J Hazard Mater ; 402: 123769, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254780

ABSTRACT

It is a great challenge to develop a high-efficiency reactive flame retardant, applied to anhydride-cured epoxy resin (EP) system, simultaneously possessing good compatibility with matrix and mechanical reinforcement. In this respect, we successfully synthesized a novel phosphorus/nitrogen/boron-containing carboxylic acid (TMDB) through the facile esterification and addition reaction among 1,3,5-tris(2-hydroxyethyl)isocyanurate (THEIC), maleic anhydride (MAH), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and boric acid (BA). TMDB was utilized as a co-curing agent for EP/methyltetrahydrophthalic anhydride (MeTHPA) system and finally cured EP behaved great transparency, suggesting excellent compatibility of TMDB with EP. Compared with pure EP, modified EP exhibited comparable thermal stability and heat resistance but higher flame retardance. With only 15.1 wt% TMDB loading, the LOI value of anhydride-cured EP increased to 29.6% from 20.1% of pure EP, and UL-94 V-0 rating was achieved. The peak heat release rate (PHRR), total heat release (THR) and total smoke production (TSP) remarkably decreased by 58.5%, 41.7% and 47.2% compared with that of pure EP, respectively. Besides, different measurements revealed TMDB simultaneously functioned in the condensed and gaseous phase during combustion. Furthermore, after incorporation of TMDB, mechanical properties of cured EP were improved and the maximum increments of flexural and tensile strength can reach 11.8% and 61.4%, respectively.

14.
Nano Lett ; 20(2): 803-811, 2020 02 12.
Article in English | MEDLINE | ID: mdl-29323918

ABSTRACT

Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.

15.
ACS Nano ; 12(7): 6668-6676, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29906098

ABSTRACT

In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field ( H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications.


Subject(s)
Colloids/chemistry , Hydrodynamics , Magnetite Nanoparticles/chemistry , Nanotechnology/instrumentation , Povidone/chemistry , Catalysis , Chlorophyta/cytology , Equipment Design , Magnetic Fields , Motion , Platinum/chemistry , Polymers/chemistry , Pyrroles/chemistry
16.
Nanoscale ; 9(27): 9548-9555, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28661527

ABSTRACT

The responsive photonic crystal (RPC) balls with adjustable lattice constant and controllable rotation developed to date are all based on Janus particles of three dimensional (3-D) periodical structures, which suffer from color uneveness and asymmetric volume change, limiting the applications in the fields of encoding, sensing and displays. In this study, we have developed the first 1-D magnetic photonic crystal balls with tunable lattice constants by fixing collectively oriented periodical 1-D magnetic nanochain-like structures in responsive polymer poly(N-isopropylacrylamide) hydrogel balls under magnetic field (H) and UV irradiation. The structural colors of the balls are uniform on the entire ball and can be regulated by temperature (T) and solvents. The as-prepared RPC balls always retain a perfectly spherical shape even when the hydrogel volume changes with stimuli because of the low content of the included 1-D magnetic nanochain-like structures. This endows smooth rotation in the H direction to switch "on/off" their structural colors at various stimuli, as demonstrated by a colorful display application at temperature ranging from 10 to 35 °C. The as-developed RPC balls are expected to have promising potential applications in color display, rewritable signage, biological and chemical sensors owing to their excellent multi-response properties.

17.
Nanoscale ; 9(9): 3105-3113, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28197592

ABSTRACT

Herein, we use experiments and numerical simulations to demonstrate a novel class of magnetically responsive photonic crystals (MRPCs) based on photonic nanorods which exhibit multiple optical properties in a magnetic field (H) due to their fixed photonic nanorods and H-tunable lattice defects. As an example, superparamagnetic Fe3O4@polyvinyl pyrrolidone (PVP)@SiO2 photonic nanorods were fabricated through a polyacrylic acid-catalysed hydrolysis-condensation reaction of γ-mercaptopropyltrimethoxysilane around chain-like PC templates formed by monodispersed Fe3O4@PVP particles under H. For the as-proposed MRPCs, with increasing H, the photonic nanorods firstly experience in situ rotational orientation along the H direction, followed by alignment and connection into long parellel nanochains via the spaces between the ends of adjacent photonic nanorods (named lattice defects). As the number and size of the lattice defects changes with H, the MRPCs exhibit visible red-shifts and blue-shifts of their diffraction wavelengths in addition to monotonous enhancement of their diffraction peaks. These optical properties are very different from those of previously reported MRPCs. The diversity of the structural colors and brightness of these MRPCs with H is also closely dependent on the applied time of H, the concentration of the photonic nanorods, and the structural parameters of the nanorods, including nanorod length and interparticle distance. Due to the difficult duplication of their various optical properties as well as their easy fabrication and low cost, MRPCs based on photonic nanorods are suitable for wide applications in forgery protection and information encryption.

18.
Small ; 11(21): 2564-70, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25627213

ABSTRACT

In this work, light-controlled bubble-propelled single-component metal oxide tubular microengines have for the first time been demonstrated. For such a simple single-component TiO2 tubular microengine in H2O2 aqueous solution under UV irradiation, when the inner diameter and length of the tube are regulated, the O2 molecules will nucleate and grow into bubbles preferentially on the inner concave surface rather than on the outer surface, resulting in a vital propulsion of the microengine. More importantly, the motion state and speed can be modulated reversibly, fast (the response time is less than 0.2 s) and wirelessly by adjusting UV irradiation. Consequently, the as-developed TiO2 tubular microengine promises potential challenged applications related to photocatalysis, such as "on-the-fly" photocatalytic degradation of organic pollutes and photocatalytic inactivation of bacteria due to the low cost, single component, and simple structure, as well as the facile fabrication in a large-scale.

19.
ACS Appl Mater Interfaces ; 6(12): 9897-903, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24869766

ABSTRACT

In this work, we have demonstrated the autonomous motion of biologically-friendly Mg/Pt-Poly(N-isopropylacrylamide) (PNIPAM) Janus micromotors in simulated body fluids (SBF) or blood plasma without any other additives. The pit corrosion of chloride anions and the buffering effect of SBF or blood plasma in removing the Mg(OH)2 passivation layer play major roles for accelerating Mg-H2O reaction to produce hydrogen propulsion for the micromotors. Furthermore, the Mg/Pt-PNIPAM Janus micromotors can effectively uptake, transport, and temperature-control-release drug molecules by taking advantage of the partial surface-attached thermoresponsive PNIPAM hydrogel layers. The PNIPAM hydrogel layers on the micromotors can be easily replaced with other responsive polymers or antibodies by the surface modification strategy, suggesting that the as-proposed micromotors also hold a promising potential for separation and detection of heavy metal ions, toxicants, or proteins.


Subject(s)
Acrylic Resins/chemistry , Drug Delivery Systems , Magnesium/chemistry , Water/chemistry , Body Fluids/chemistry , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogen/chemistry , Hydrogen-Ion Concentration , Plasma/chemistry , Platinum/chemistry , Temperature
20.
Adv Mater ; 26(7): 1058-64, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24282106

ABSTRACT

The first steric-repulsion-based magnetically responsive photonic crystals (MRPCs) is constructed by synthesizing uniform superparamagnetic polyvinylpyrrolidone-coated Fe3 O4 colloidal nanocrystal clusters. The color tunable range of the MRPCs can not only cover almost the entire visible specztrum in solvents of diverse polarities, but also is insusceptible to ionic strength or pH values, facilitating the practical applications of MRPCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...