Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Cell Biochem Biophys ; 70(1): 361-5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24718779

ABSTRACT

The efficacy of thalidomide to attenuate cisplatin-induced emesis was evaluated in a rat model. Four groups were utilized: control group (peritoneal injection and gastric lavage with normal saline), cisplatin group (peritoneal injection of cisplatin at 10 mg/kg and gastric lavage with normal saline), thalidomide group (cisplatin as above and gastric lavage with thalidomide at 10 mg/kg), and granisetron group (positive control for antiemetic effects; cisplatin given as above and gastric lavage done with granisetron at 0.5 mg/kg). The cisplatin-induced kaolin consumption (pica behavior) was used as a model of emesis in patients. The animals' kaolin and food intakes were measured. Further, medulla and gastric tissues were obtained 5 and 33 h after peritoneal injections to quantify the levels of Substance P and Neurokinin-1 receptor (NK-1R). The cisplatin-induced kaolin consumption was significantly (p < 0.05 vs. cisplatin group) attenuated by thalidomide 72 h after the injection. The levels of Substance P in the medulla and gastric tissue were increased 5 h after the injection in both cisplatin and thalidomide groups, however, returned faster to normal levels in the thalidomide group (p < 0.05 vs. cisplatin group). Further, levels of NK-1R in the cisplatin, thalidomide, and granisetron group were significantly increased at both 5 and 33 h (p < 0.05 vs. control group), with no obvious difference among these three groups. In conclusion, thalidomide attenuates animal equivalent of cisplatin-induced emesis, and this beneficial effect is associated with decreased levels of Substance P levels in the medulla and gastric tissue.


Subject(s)
Antiemetics/pharmacology , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Thalidomide/pharmacology , Vomiting/chemically induced , Vomiting/drug therapy , Animals , Antiemetics/therapeutic use , Disease Models, Animal , Eating/drug effects , Kaolin/metabolism , Male , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Thalidomide/therapeutic use , Vomiting/metabolism
2.
Small ; 9(9-10): 1467-81, 2013 May 27.
Article in English | MEDLINE | ID: mdl-22961942

ABSTRACT

The development of rapid, specific, cost-effective, and robust tools in monitoring Hg(2+) levels in both environmental and biological samples is of utmost importance due to the severe mercury toxicity to humans. A number of techniques exist, but the colorimetric assay, which is reviewed herein, is shown to be a possible tool in monitoring the level of mercury. These assays allow transforming target sensing events into color changes, which have applicable potential for in-the-field application through naked-eye detection. Specifically, plasmonic nanoparticle-based colorimetric assay exhibits a much better propensity for identifying various targets in terms of sensitivity, solubility, and stability compared to commonly used organic chromophores. In this review, recent progress in the development of gold nanoparticle-based colorimetric assays for Hg(2+) is summarized, with a particular emphasis on examples of functionalized gold nanoparticle systems with oligonucleotides, oligopeptides, and functional molecules. Besides highlighting the current design principle for plasmonic nanoparticle-based colorimetric probes, the discussions on challenges and the prospect of next-generation probes for in-the-field applications are also presented.


Subject(s)
Colorimetry/methods , Mercury/analysis , Nanoparticles , DNA Probes , Limit of Detection
3.
Small ; 9(4): 596-603, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23117928

ABSTRACT

In this work, monodisperse polydopamine (PDA) spheres with tunable diameters have been synthesized through a facile and low cost method using a deionized water and alcohol mixed solvent. The PDA spheres possess surface functional groups (-OH, -NH(2)), exhibiting an extraordinary versatile active nature. It is demonstrated that the PDA spheres could serve as an active template for the convenient synthesis of various nanostructures, e.g., MnO(2) hollow spheres or PDA/Fe(3)O(4) and PDA/Ag core/shell nanostructures. No surface modification or special treatment is required for the synthesis of these nanostructures, which makes the fabrication process simple and very convenient. The novel application of PDA/Fe(3)O(4) spheres as fillers in nanocomposites for high-performance capacitors is demonstrated, indicating a promising practicality. The PDA spheres provide a new general platform not only for the facile assembly of nanostructures but also a green synthetic template for practical applications.


Subject(s)
Indoles/chemistry , Nanostructures/chemistry , Polymers/chemistry , Nanotechnology , Surface Properties
4.
Adv Mater ; 24(30): 4197-202, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-23030034

ABSTRACT

Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed.


Subject(s)
Electric Capacitance , Metals/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry , Electrodes , Porosity
5.
Adv Mater ; 24(30): 4211-6, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-23030036

ABSTRACT

Within the last decade, the escalation of research output in the field of nanotechnology has spurred the development of new nanomaterials for use as assisting agents in surface assisted laser desorption ionization mass spectrometry (SALDI-MS). Specifically modified nanomaterials, coupled with mass spectrometry, have improved the detection sensitivity, specificity, flexibility and reproducibility of SALDI-MS analysis. The technological advancement of LDI-MS has in turn, propelled the use of the analytical technique in the field of forensics. In this report, the various roles and applications of metal-, silicon- and carbon-based nanostructured materials as SALDI matrices in the analysis of forensic samples are described. The advantages of SALDI-MS as an analytical tool for forensic sample analysis are also discussed.


Subject(s)
Forensic Sciences/methods , Mass Spectrometry/methods , Nanostructures
7.
Nano Lett ; 12(9): 4734-7, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22889421

ABSTRACT

We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.


Subject(s)
Crystallization/methods , Graphite/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Molecular Imprinting/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
8.
Small ; 8(22): 3412-6, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-22915550

ABSTRACT

A fast and simple colorimetric detection system for sulfite, based on diazonium-gold-nanoparticle(AuNP) complexation, has high selectivity and sensitivity in aqueous media. The positively charged diazonium has affinity for the AuNP surface due to an electrostatic effect, which prevents AuNPs from aggregating in highly saline solutions. Upon addition of sulfite, the AuNPs are free to aggregate due to the formation of a neutral and insoluble phenylhydrazine derivative.

9.
Small ; 8(20): 3201-8, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-22777966

ABSTRACT

Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved.


Subject(s)
Electrophoresis/methods , Graphite/chemistry , Nanoparticles/chemistry , Electronics , Nanotechnology
10.
Nanoscale ; 4(13): 3926-31, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22652813

ABSTRACT

In this work, n-type Ag(2)Te nanoparticles are prepared by a solvothermal approach with uniform and controllable sizes, e.g. 5-15 nm. The usage of dodecanethiol during the synthesis effectively introduces sulfur doping into the sample, which optimizes the charge carrier concentration of the nanoparticles to >1 × 10(20) cm(-3). This allows us to achieve the desired electrical resistivities of <5 × 10(-6)Ω m. It is demonstrated that Ag(2)Te particles prepared by this solvothermal process can exhibit high ZT values, e.g. 15 nm Ag(2)Te nanoparticles with effective sulphur doping show a maximum ZT value of ~0.62 at 550 K.

11.
Small ; 8(18): 2807-11, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-22730203

ABSTRACT

A special materials system that allows the self-organization of a unique hybrid nanonipple structure is developed. The system consists of a nanoneedle with a small nanodot sitting on top. Such hybrid nanonipples provide building blocks to assemble functional devices with significantly improved performance. The application of the system to high-sensitivity gas sensors is also demonstrated.

13.
Adv Mater ; 24(30): 4071-96, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22581710

ABSTRACT

Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated.


Subject(s)
Electrical Equipment and Supplies , Electrolytes/chemistry , Polymers/chemistry , Color
14.
ACS Nano ; 6(6): 5309-19, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22575153

ABSTRACT

Nonplane molecules with multiple large aromatic planes could be promising candidates to form various polyhedral micro/nanocrystals by manipulating the different π···π stacking, tuning the cohesive energies of crystal facets, and controlling the kinetic growth process. Spirocyclic aromatic hydrocarbons (SAHs) not only have two cross-shaped aromatic planes but also offer the feature of supramolecular steric hindrance, making it favorable for the heterogeneous kinetic growth into highly symmetric polyhedra. Herein, we report that a novel SAH compound, spiro[fluorene-9,7'-dibenzo[c,h]acridine]-5'-one (SFDBAO), can self-assemble into various monodispersed shapes such as hexahedra, octahedra, and decahedra through the variation of either different types of surfactants, such as Pluronic 123 (P123) and cetyltrimethyl ammonium bromide (CTAB), or growth parameters. In addition, the possible mechanism of crystal facet growth has been proposed according to the SEM, XRD, TEM, and SAED characterization of organic polyhedral micro/nanocrystals. The unique cruciform-shaped SAHs have been demonstrated as fascinating supramolecular synthons for various highly symmetric polyhedral assembling.


Subject(s)
Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Crystallization/methods , Kinetics , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
15.
J Nanosci Nanotechnol ; 12(2): 959-65, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629879

ABSTRACT

Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.

16.
Chem Commun (Camb) ; 48(48): 5974-6, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22565156

ABSTRACT

A new, longest, stable, green twisted heteroacene 2-methyl-1,4,6,13-tetraphenyl-7:8,11:12-bisbenzo-anthro[g]isoquinolin-3(2H)-one (3) was synthesized by employing a "clean reaction" strategy based on thermally eliminating lactam bridges. Calculation shows that the HOMO-LUMO bandgap is in good agreement with experimental data.

19.
Forensic Sci Int ; 221(1-3): 84-91, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22551694

ABSTRACT

The ability of two mass spectrometric methods, surface-assisted laser desorption/ionization-time of flight-mass spectrometry (SALDI-TOF-MS) and direct analysis in real time (DART-MS), to detect the presence of seven common explosives (six nitro-organic- and one peroxide-type) in spiked latent fingermarks has been examined. It was found that each explosive could be detected with nanogram sensitivity for marks resulting from direct finger contact with a glass probe by DART-MS or onto stainless steel target plates using SALDI-TOF-MS for marks pre-dusted with one type of commercial black magnetic powder. These explosives also could be detected in latent marks lifted from six common surfaces (paper, plastic bag, metal drinks can, wood laminate, adhesive tape and white ceramic tile) whereas no explosive could be detected in equivalent pre-dusted marks on the surface of a commercial lifting tape by the DART-MS method due to high background interference from the tape material. The presence of TNT and Tetryl could be detected in pre-dusted latent fingermarks on a commercial lifting tape for up to 29 days sealed and stored under ambient conditions.

20.
ACS Appl Mater Interfaces ; 4(5): 2769-74, 2012 May.
Article in English | MEDLINE | ID: mdl-22496508

ABSTRACT

1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...