Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biol Toxicol ; 40(1): 55, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008169

ABSTRACT

Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.


Subject(s)
Cytokines , HMGB1 Protein , Inflammation , HMGB1 Protein/metabolism , Humans , Animals , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Cytokines/metabolism , Receptor for Advanced Glycation End Products/metabolism
2.
Clin Drug Investig ; 43(10): 773-783, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37755660

ABSTRACT

BACKGROUND AND OBJECTIVE: Although tumor lysis syndrome was reported with obinutuzumab and rituximab, the association with CD20 monoclonal antibodies for chronic lymphocytic leukemia is unclear. METHODS: A disproportionality analysis was conducted to investigate the link between CD20 monoclonal antibodies and tumor lysis syndrome by accounting for known confounders and comparing with other anticancer drugs, using data from the US Food and Drug Administration Adverse Event Reporting System. Reporting odds ratios and the information component were calculated as disproportionality measures. A stepwise sensitivity analysis was conducted to test the robustness of disproportionality signals. Bradford Hill criteria were adopted to globally assess the potential causal relationship. RESULTS: From 2004 to 2022, 197, 368, 41, and 14 tumor lysis syndrome reports were detected for obinutuzumab, rituximab, ofatumumab, and alemtuzumab (CD52 monoclonal antibody), respectively. Disproportionality signals were found for the above four monoclonal antibodies when compared with other anticancer drugs. Sensitivity analyses confirmed robust disproportionality signals for obinutuzumab, rituximab, and ofatumumab. The median onset time was 4.5, 1.5, and 2.5 days for rituximab, obinutuzumab, and ofatumumab, respectively. A potential causal relationship was fulfilled by assessing Bradford Hill criteria. CONCLUSIONS: This pharmacovigilance study on the FDA Adverse Event Reporting System detected a plausible association between CD20 monoclonal antibodies (but not CD52) and tumor lysis syndrome by assessing the adapted Bradford Hill criteria. Urgent clarification of drug- and patient-related risk factors is needed through large comparative population-based studies.

3.
Phytomedicine ; 116: 154893, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37236047

ABSTRACT

BACKGROUND: The liver is renowned for its remarkable regenerative capacity to restore its structure, size and function after various types of liver injury. However, in patients with end-stage liver disease, the regenerative capacity is inhibited and liver transplantation is the only option. Considering the limitations of liver transplantation, promoting liver regeneration is suggested as a new therapeutic strategy for liver disease. Traditional Chinese medicine (TCM) has a long history of preventing and treating various liver diseases, and some of them have been proven to be effective in promoting liver regeneration, suggesting the therapeutic potential in liver diseases. PURPOSE: This review aims to summarize the molecular mechanisms of liver regeneration and the pro-regenerative activity and mechanism of TCM formulas, extracts and active ingredients. METHODS: We conducted a systematic search in PubMed, Web of Science and the Cochrane Library databases using "TCM", "liver regeneration" or their synonyms as keywords, and classified and summarized the retrieved literature. The PRISMA guidelines were followed. RESULTS: Forty-one research articles met the themes of this review and previous critical studies were also reviewed to provide essential background information. Current evidences indicate that various TCM formulas, extracts and active ingredients have the effect on stimulating liver regeneration through modulating JAK/STAT, Hippo, PI3K/Akt and other signaling pathways. Besides, the mechanisms of liver regeneration, the limitation of existing studies and the application prospect of TCM to promote liver regeneration are also outlined and discussed in this review. CONCLUSION: This review supports TCM as new potential therapeutic options for promoting liver regeneration and repair of the failing liver, although extensive pharmacokinetic and toxicological studies, as well as elaborate clinical trials, are still needed to demonstrate safety and efficacy.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/chemistry , Phosphatidylinositol 3-Kinases , Phytotherapy/methods , Liver
4.
J Appl Toxicol ; 43(3): 350-359, 2023 03.
Article in English | MEDLINE | ID: mdl-36008890

ABSTRACT

Liquiritin (LQ) is an important monomer active component in flavonoids of licorice. The objective of this study was to evaluate the hepatoprotective effects of LQ in cholestatic mice. LQ (40 or 80 mg/kg) was intragastrically administered to mice once daily for 6 days, and mice were treated intragastrically with a single dosage of ANIT (75 mg/kg) on the 5th day. On the 7th day, mice were sacrificed to collect blood and livers. The mRNA and protein levels were determined by qRT-PCR and western blot assay. We also conducted systematical assessments of miRNAs expression profiles in the liver. LQ ameliorated ANIT-induced cholestatic liver injury, as evidenced by reduced serum biochemical markers and attenuated pathological changes in liver. Pretreatment of LQ reduced the increase of malondialdehyde, TNF-α, and IL-1ß induced by ANIT. Moreover, ANIT suppressed the expression of Sirt1 and FXR in liver tissue, which was weakened in the LQ pre-treatment group. LQ enhanced the nuclear expression of Nrf2, which was increased in the ANIT group. LQ also increased the mRNA expressions of bile acid transporters Bsep, Ntcp, Mrp3, and Mrp4. Furthermore, a miRNA deep sequencing analysis revealed that LQ had a global regulatory effect on the hepatic miRNA expression. Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the differentially expressed miRNAs were mainly related to metabolic pathways, endocytosis, and MAPK signaling pathway. Collectively, LQ attenuated hepatotoxicity and cholestasis by regulating the expression of Sirt1/FXR/Nrf2 and the bile acid transporters, indicating that LQ might be an effective approach for cholestatic liver diseases.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , MicroRNAs , Mice , Animals , 1-Naphthylisothiocyanate/toxicity , 1-Naphthylisothiocyanate/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/drug therapy , Cholestasis, Intrahepatic/genetics , Liver , Cholestasis/chemically induced , Cholestasis/drug therapy , Bile Acids and Salts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism
5.
J Pharm Pharmacol ; 72(12): 1840-1853, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32144952

ABSTRACT

OBJECTIVES: Ginkgo biloba leaves contain amentoflavone (AMF), a dietary flavonoid that possesses antioxidant and anticancer activity. Flavonoids are extensively subjected to glucuronidation. This study aimed to determine the metabolic profile of AMF and the effect of glucuronidation on AMF bioactivity. METHODS: A pharmacokinetic study was conducted to determine the plasma concentrations of AMF and its metabolites. The metabolic profile of AMF was elucidated using different species of microsomes. The antioxidant activity of AMF metabolites was determined using DPPH/ABTS radical and nitric oxide assays. The anticancer activity of AMF metabolites was evaluated in U87MG/U251 cells. KEY FINDINGS: Pharmacokinetic studies indicated that the oral bioavailability of AMF was 0.06 ± 0.04%, and the area under the curve of the glucuronidated AMF metabolites (410.938 ± 62.219 ng/ml h) was significantly higher than that of AMF (194.509 ± 16.915 ng/ml h). UGT1A1 and UGT1A3 greatly metabolized AMF. No significant difference was observed in the antioxidant activity between AMF and its metabolites. The anticancer activity of AMF metabolites significantly decreased. CONCLUSIONS: A low AMF bioavailability was due to extensive glucuronidation, which was mediated by UGT1A1 and UGT1A3. Glucuronidated AMF metabolites had the same antioxidant but had a lower anticancer activity than that of AMF.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacokinetics , Antioxidants/pharmacokinetics , Biflavonoids/pharmacokinetics , Ginkgo biloba , Glucuronides/pharmacokinetics , Oxidative Stress/drug effects , Plant Extracts/pharmacokinetics , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Biflavonoids/administration & dosage , Biflavonoids/isolation & purification , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , Ginkgo biloba/chemistry , Glucuronosyltransferase/metabolism , Humans , Intestines/enzymology , Male , Metabolic Detoxication, Phase II , Mice , Microsomes, Liver/enzymology , Plant Extracts/isolation & purification , Plant Leaves , RAW 264.7 Cells , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...