Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 34(3): 1774-1789, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658888

ABSTRACT

OBJECTIVES: Accurate preoperative estimation of the risk of breast-conserving surgery (BCS) resection margin positivity would be beneficial to surgical planning. In this multicenter validation study, we developed an MRI-based radiomic model to predict the surgical margin status. METHODS: We retrospectively collected preoperative breast MRI of patients undergoing BCS from three hospitals (SYMH, n = 296; SYSUCC, n = 131; TSPH, n = 143). Radiomic-based model for risk prediction of the margin positivity was trained on the SYMH patients (7:3 ratio split for the training and testing cohorts), and externally validated in the SYSUCC and TSPH cohorts. The model was able to stratify patients into different subgroups with varied risk of margin positivity. Moreover, we used the immune-radiomic models and epithelial-mesenchymal transition (EMT) signature to infer the distribution patterns of immune cells and tumor cell EMT status under different marginal status. RESULTS: The AUCs of the radiomic-based model were 0.78 (0.66-0.90), 0.88 (0.79-0.96), and 0.76 (0.68-0.84) in the testing cohort and two external validation cohorts, respectively. The actual margin positivity rates ranged between 0-10% and 27.3-87.2% in low-risk and high-risk subgroups, respectively. Positive surgical margin was associated with higher levels of EMT and B cell infiltration in the tumor area, as well as the enrichment of B cells, immature dendritic cells, and neutrophil infiltration in the peritumoral area. CONCLUSIONS: This MRI-based predictive model can be used as a reliable tool to predict the risk of margin positivity of BCS. Tumor immune-microenvironment alteration was associated with surgical margin status. CLINICAL RELEVANCE STATEMENT: This study can assist the pre-operative planning of BCS. Further research on the tumor immune microenvironment of different resection margin states is expected to develop new margin evaluation indicators and decipher the internal mechanism. KEY POINTS: • The MRI-based radiomic prediction model (CSS model) incorporating features extracted from multiple sequences and segments could estimate the margin positivity risk of breast-conserving surgery. • The radiomic score of the CSS model allows risk stratification of patients undergoing breast-conserving surgery, which could assist in surgical planning. • With the help of MRI-based radiomics to estimate the components of the immune microenvironment, for the first time, it is found that the margin status of breast-conserving surgery is associated with the infiltration of immune cells in the microenvironment and the EMT status of breast tumor cells.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Mastectomy, Segmental , Margins of Excision , Retrospective Studies , Radiomics , Magnetic Resonance Imaging , Tumor Microenvironment
2.
JAMA Netw Open ; 3(12): e2028086, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33289845

ABSTRACT

Importance: Axillary lymph node metastasis (ALNM) status, typically estimated using an invasive procedure with a high false-negative rate, strongly affects the prognosis of recurrence in breast cancer. However, preoperative noninvasive tools to accurately predict ALNM status and disease-free survival (DFS) are lacking. Objective: To develop and validate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic signatures for preoperative identification of ALNM and to assess individual DFS in patients with early-stage breast cancer. Design, Setting, and Participants: This retrospective prognostic study included patients with histologically confirmed early-stage breast cancer diagnosed at 4 hospitals in China from July 3, 2007, to September 21, 2019, randomly divided (7:3) into development and vaidation cohorts. All patients underwent preoperative MRI scans, were treated with surgery and sentinel lymph node biopsy or ALN dissection, and were pathologically examined to determine the ALNM status. Data analysis was conducted from February 15, 2019, to March 20, 2020. Exposure: Clinical and DCE-MRI radiomic signatures. Main Outcomes and Measures: The primary end points were ALNM and DFS. Results: This study included 1214 women (median [IQR] age, 47 [42-55] years), split into development (849 [69.9%]) and validation (365 [30.1%]) cohorts. The radiomic signature identified ALNM in the development and validation cohorts with areas under the curve (AUCs) of 0.88 and 0.85, respectively, and the clinical-radiomic nomogram accurately predicted ALNM in the development and validation cohorts (AUC, 0.92 and 0.90, respectively) based on a least absolute shrinkage and selection operator (LASSO)-logistic regression model. The radiomic signature predicted 3-year DFS in the development and validation cohorts (AUC, 0.81 and 0.73, respectively), and the clinical-radiomic nomogram could discriminate high-risk from low-risk patients in the development cohort (hazard ratio [HR], 0.04; 95% CI, 0.01-0.11; P < .001) and the validation cohort (HR, 0.04; 95% CI, 0.004-0.32; P < .001) based on a random forest-Cox regression model. The clinical-radiomic nomogram was associated with 3-year DFS in the development and validation cohorts (AUC, 0.89 and 0.90, respectively). The decision curve analysis demonstrated that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone. Conclusions and Relevance: This study described the application of MRI-based machine learning in patients with breast cancer, presenting novel individualized clinical decision nomograms that could be used to predict ALNM status and DFS. The clinical-radiomic nomograms were useful in clinical decision-making associated with personalized selection of surgical interventions and therapeutic regimens for patients with early-stage breast cancer.


Subject(s)
Breast Neoplasms/diagnostic imaging , Lymph Nodes/diagnostic imaging , Lymphatic Metastasis/diagnostic imaging , Magnetic Resonance Imaging/statistics & numerical data , Nomograms , Adult , Axilla , Breast Neoplasms/mortality , Breast Neoplasms/surgery , China , Clinical Decision-Making/methods , Contrast Media , Decision Support Techniques , Disease-Free Survival , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Preoperative Period , Prognosis , Proportional Hazards Models , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...