Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Chem Sci ; 15(11): 4086-4094, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487246

ABSTRACT

The development of an efficient catalytic system for low-temperature acetylene semihydrogenation using nonnoble metals is important for the cost-effective production of polymer-grade pure ethylene. However, it remains challenging owing to the intrinsic low activity. Herein, we report a flexibly tunable catalyst design concept based on a pseudo-binary alloy, which enabled a remarkable enhancement in the catalytic activity, selectivity, and durability of a Ni-based material. A series of (Ni1-xCux)3Ga/TiO2 catalysts exhibiting L12-type pseudo-binary alloy structures with various Cu contents (x = 0.2, 0.25, 0.33, 0.5, 0.6, and 0.75) were prepared for active site tuning. The optimal catalyst, (Ni0.8Cu0.2)3Ga/TiO2, exhibited outstandingly high catalytic activity among reported 3d transition metal-based systems and excellent ethylene selectivity (96%) and long-term stability (100 h) with near full conversion even at 150 °C. A mechanistic study revealed that Ni2Cu hollow sites on the (111) surface weakened the strong adsorption of acetylene and vinyl adsorbate, which significantly accelerated the hydrogenation process and inhibited undesired ethane formation.

2.
J Colloid Interface Sci ; 656: 214-224, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37989054

ABSTRACT

To easily load Pt on smoothy graphene synthesized by cathodic exfoliation method and achieve adjacent plane distribution of Pt, carbon dots (CDs) are used to construct anchoring points to load highly dispersed Pt species due to strong interaction between CDs and Pt species. The composite of Pt-CDs/graphene is synthesized via a continuous process of cathodic exfoliation-hydrothermal-impregnation-reduction. Characterization results indicate the distribution configuration of Pt varies from coated structure of CDs@Pt to dispersed configuration of CDs&Pt or Pt&CDs, then to wrapping configuration of Pt@CDs with increased amount of CDs. It's found that suitable introduction of CDs promotes the adjacent plane distribution of Pt species. The obtained best Pt-4CDs/G shows the low overpotential of 36 mV (10 mA⋅cm-2) and high mass activity of 3747.8 mA mg-1 at -40 mV towards electrocatalytic hydrogen evolution reaction (HER), 9.2 times more active than that of Pt/C (406.2 mA mg-1). The superior HER performance of Pt-4CDs/G is attributed to its relatively adjacent plane distribution of Pt, which supports high electrochemically active surface area and more adjacent Pt sites for H* adsorption. Benefitting from that, the HER process for Pt-4CDs/G favorably follows the Tafel pathway, resulting in low hydrogen adsorption free energy and excellent HER activity.

3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139124

ABSTRACT

Neurodevelopmental disorders (NDDs) include various neurological disorders with high genetic heterogeneity, characterized by delayed or impaired cognition, communication, adaptive behavior, and psychomotor skills. These disorders result in significant morbidity for children, thus burdening families and healthcare/educational systems. However, there is a lack of early diagnosis and effective therapies. Therefore, a more connected approach is required to explore these disorders. Microglia, the primary phagocytic cells within the central nervous system, are crucial in regulating neuronal viability, influencing synaptic dynamics, and determining neurodevelopmental outcomes. Although the neurobiological basis of autism spectrum disorder (ASD) and schizophrenia (SZ) has attracted attention in recent decades, the role of microglia in ASD and SZ remains unclear and requires further discussion. In this review, the important and frequently multifaceted roles that microglia play during neurodevelopment are meticulously emphasized and potential microglial mechanisms that might be involved in conditions such as ASD and SZ are postulated. It is of utmost importance to acquire a comprehensive understanding of the complexities of the interplay between microglia and neurons to design effective, targeted therapeutic strategies to mitigate the effects of NDDs.


Subject(s)
Autism Spectrum Disorder , Schizophrenia , Child , Humans , Microglia/physiology , Brain , Neurons
4.
Lab Anim Res ; 39(1): 35, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115139

ABSTRACT

Sex difference has shown in the arthritis diseases in human population and animal models. We investigate how the sex and symmetry vary among mouse models with different genomic backgrounds. Disease data of sex and limbs accumulated in the past more than two decades from four unique populations of murine arthritis models were analyzed. They are (1) interleukin-1 receptor antagonist (IL-1ra) deficient mice under Balb/c background (Balb/c KO); (2) Mice with collagen II induced arthritis under DBA/1 background; (3) Mice with collagen II induced arthritis under C57BL/6 (B6) background and (4) A F2 generation population created by Balb/c KO X DBA/1 KO. Our data shows that there is a great variation in sexual dimorphism for arthritis incidence and severity of arthritis in mice harboring specific genetic modifications. For a F2 population, the incidence of arthritis was 57.1% in female mice and 75.6% in male mice. There was a difference in severity related to sex in two populations: B6.DR1/ B6.DR4 (P < 0.001) and F2 (P = 0.023) There was no difference Balb/c parental strain or in collagen-induced arthritis (CIA) in DBA/1 mice. Among these populations, the right hindlimbs are significantly higher than the scores for the left hindlimbs in males (P < 0.05). However, when examining disease expression using the collagen induced arthritis model with DBA/1 mice, sex-dimorphism did not reach statistical significance, while left hindlimbs showed a tendency toward greater disease expression over the right. Sexual dimorphism in disease expression in mouse models is strain and genomic background dependent. It sets an alarm that potential variation in sexual dimorphism among different racial and ethnic groups in human populations may exist. It is important to not only include both sexes and but also pay attention to possible variations caused by disease expression and response to treatment in all the studies of arthritis in animal models and human populations.

5.
Front Plant Sci ; 14: 1258521, 2023.
Article in English | MEDLINE | ID: mdl-37954998

ABSTRACT

Forest aboveground biomass (AGB) and its biomass components are key indicators for assessing forest ecosystem health, productivity, and carbon stocks. Light Detection and Ranging (LiDAR) technology has great advantages in acquiring the vertical structure of forests and the spatial distribution characteristics of vegetation. In this study, the 56 features extracted from airborne LiDAR point cloud data were used to estimate forest total and component AGB. Variable importance-in-projection values calculated through a partial least squares regression algorithm were utilized for LiDAR-derived feature ranking and optimization. Both leave-one-out cross-validation (LOOCV) and cross-validation methods were applied for validation of the estimated results. The results showed that four cumulative height percentiles (AIH 30, AIH 40, AIH 20, and AIH 25), two height percentiles (H 8 and H 6), and four height-related variables (H mean, H sqrt, H mad, and H curt) are ranked more frequently in the top 10 sensitive features for total and component forest AGB retrievals. Best performance was acquired by random forest (RF) algorithm, with R 2 = 0.75, root mean square error (RMSE) = 22.93 Mg/ha, relative RMSE (rRMSE) = 25.30%, and mean absolute error (MAE) = 19.26 Mg/ha validated by the LOOCV method. For cross-validation results, R 2 is 0.67, RMSE is 24.56 Mg/ha, and rRMSE is 25.67%. The performance of support vector regression (SVR) for total AGB estimation is R 2 = 0.66, RMSE = 26.75 Mg/ha, rRMSE = 28.62%, and MAE = 22.00 Mg/ha using LOOCV validation and R 2 = 0.56, RMSE = 30.88 Mg/ha, and rRMSE = 31.41% by cross-validation. For the component AGB estimation, the accuracy from both RF and SVR algorithms was arranged as stem > bark > branch > leaf. The results confirmed the sensitivity of LiDAR-derived features to forest total and component AGBs. They also demonstrated the worse performance of these features for retrieval of leaf component AGB. RF outperformed SVR for both total and component AGB estimation, the validation difference from LOOCV and cross-validation is less than 5% for both total and component AGB estimated results.

6.
J Colloid Interface Sci ; 652(Pt B): 1734-1742, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37672976

ABSTRACT

Electrocatalytic reduction of CO2 (CO2RR) to value-added fuels and chemicals can potentially serve as a promising strategy to curb CO2 accumulation and carbon neutral cycle, but is still plagued by sluggish kinetics, poor selectivity and weak durability. Herein, we developed highly-dispersed nickel species on the nitrogen-doped carbon materials (Ni/NC) via the double solvent method (DSM), followed by the pyrolysis. The as-prepared Ni/NC possesses high CO2-to-CO selectivity of 93.2%∼98.6% at broad potential range (0.57 âˆ¼ 0.97 VRHE), decent jCO of 57.9 mAcm-2 at -1.07 VRHE, and significant robustness (retaining 96.3% of the initial faradaic efficiency for CO formation after 50 h electrolysis). As manifested by the rotating ring-disk electrode (RRDE) tests, the DSM-based Ni/NC possesses more significant pH-buffering capacity than Ni nanoparticles, thus promotes the CO2-to-CO. DFT calculations unveil that Ni/NC exhibits relatively lower d-band center, hence resulting in favorable desorption of CO from the catalyst surface that intrinsically boost the CO2-to-CO compared with the nanoparticle catalyst. These results suggest that the DSM-derived Ni/NC catalysts is a promising candidate towards large-scale application of CO2-to-CO.

7.
Drug Des Devel Ther ; 17: 1945-1957, 2023.
Article in English | MEDLINE | ID: mdl-37408867

ABSTRACT

Purpose: This study aims to evaluate the effects of the intraoperative application of low-dose esketamine on postoperative neurocognitive dysfunction (PND) in elderly patients undergoing general anesthesia for gastrointestinal tumors. Methods: Sixty-eight elderly patients were randomly allocated to two groups: the esketamine group (group Es) (0.25 mg/kg loading, 0.125mg/kg/h infusion) and the control group (group C) (received normal saline). The primary outcome was the incidence of delayed neurocognitive recovery (DNR). The secondary outcomes were intraoperative blood loss, the total amount of fluid given during surgery, propofol and remifentanil consumption, cardiovascular adverse events, use of vasoactive drugs, operating and anesthesia time, the number of cases of sufentanil remedial analgesia, the incidence of postoperative delirium (POD), the intraoperative hemodynamics, bispectral index (BIS) value at 0, 1, 2 h after operation and numeric rating scale (NRS) pain scores within 3 d after surgery. Results: The incidence of DNR in group Es (16.13%) was lower than in group C (38.71%) (P <0.05). The intraoperative remifentanil dosage and the number of cases of dopamine used in group Es were lower than in group C (P <0.05). Compared with group C, DBP was higher at 3 min after intubation, and MAP was lower at 30 min after extubation in group Es (P<0.05). The incidence of hypotension and tachycardia in group Es was lower than in group C (P <0.05). The NRS pain score at 3 d after surgery in group Es was lower than in group C (P <0.05). Conclusion: Low-dose esketamine infusion reduced to some extent the incidence of DNR in elderly patients undergoing general anesthesia for gastrointestinal tumors, improved intraoperative hemodynamics and BIS value, decreased the incidence of cardiovascular adverse events and the intraoperative consumption of opioids, and relieved postoperative pain.


Subject(s)
Delirium , Gastrointestinal Neoplasms , Humans , Aged , Remifentanil , Anesthesia, General/adverse effects , Pain, Postoperative , Gastrointestinal Neoplasms/surgery
9.
Materials (Basel) ; 16(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36984379

ABSTRACT

The electrochemically oxidative upgrading reaction (OUR) of organic compounds has gained enormous interest over the past few years, owing to the advantages of fast reaction kinetics, high conversion efficiency and selectivity, etc., and it exhibits great potential in becoming a key element in coupling with electricity, synthesis, energy storage and transformation. On the one hand, the kinetically more favored OUR for value-added chemical generation can potentially substitute an oxygen evolution reaction (OER) and integrate with an efficient hydrogen evolution reaction (HER) or CO2 electroreduction reaction (CO2RR) in an electricity-input mode. On the other hand, an OUR-based cell or battery (e.g., fuel cell or Zinc-air battery) enables the cogeneration of value-added chemicals and electricity in the electricity-output mode. For both situations, multiple benefits are to be obtained. Although the OUR of organic compounds is an old and rich discipline currently enjoying a revival, unfortunately, this fascinating strategy and its integration with the HER or CO2RR, and/or with electricity generation, are still in the laboratory stage. In this minireview, we summarize and highlight the latest progress and milestones of the OUR for the high-value-added chemical production and cogeneration of hydrogen, CO2 conversion in an electrolyzer and/or electricity in a primary cell. We also emphasize catalyst design, mechanism identification and system configuration. Moreover, perspectives on OUR coupling with the HER or CO2RR in an electrolyzer in the electricity-input mode, and/or the cogeneration of electricity in a primary cell in the electricity-output mode, are offered for the future development of this fascinating technology.

10.
Biomed Chromatogr ; 37(4): e5562, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36480472

ABSTRACT

Metabolic disorders accompany nonalcoholic fatty liver disease (NAFLD), associated with prediabetes. Lycium barbarum polysaccharides (LBP) seem to be a potential prebiotic, and aerobic exercise has shown protective effects on NAFLD with prediabetes. However, their combined effects on NAFLD and prediabetes remain unclear. This study investigated the effects of LBP and aerobic exercise alone, and their combined effects on the metabolomics of serum, and explored the potential mechanisms utilizing a high-fat diet-induced rat model of NAFLD and prediabetes. It provided the metabolic basis for the pathogenesis and early diagnosis of prediabetes complicated with NAFLD. Untargeted metabolomics profiling was performed using ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry to analyze the changes in overall metabolites in each group of samples. An orthogonal partial least squares-discriminant analysis model with variable importance on projection >1 and p < 0.05 were used as the screening criteria to screen the significant differential metabolites and analyze the expression changes and functional pathways. Different intervention treatments showed clear discrimination by univariate and multivariate analyses. The model group had a high relative level of expression of lipids. Comparison between the two groups showed steroids with high expression after LBP and aerobic exercise treatment separately and alkaloids and fatty acyls with high expression after aerobic exercise and the combination intervention, respectively. Comparison of the five groups showed some of the metabolites to be differently expressed after the intervention improved lipid and fatty acid metabolism. The three types of intervention had sound effects on the changes in liver index for the diseases studied. Furthermore, the combination treatment may be a better choice for disease prevention and treatment than a single treatment. Our analysis of metabolomics confirmed that the different treatments had significant regulatory effects on the metabolic pathways. Our findings strongly support the possibility that aerobic exercise combined with LBP can be regarded as a potential therapeutic method for NAFLD in prediabetics.


Subject(s)
Lycium , Non-alcoholic Fatty Liver Disease , Prediabetic State , Rats , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Metabolomics/methods , Polysaccharides
11.
Org Lett ; 25(1): 231-235, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36562571

ABSTRACT

Copper-powder-catalyzed syn-selective chlorosulfonylation of readily available alkynes by an atom transfer radical addition (ATAR) process has been developed, providing straightforward access to a broad range of (Z)-ß-chlorovinylsulfones in good yields under mild conditions. In addition, this method is ligand-free and features excellent stereoselectivity and high atom economy. Moreover, the product was obtained without an apparent loss of yield when the reaction was performed on the gram scale at a low catalyst loading. In this reaction, the copper powder not only acts as a sulfone radical initiator but also produces the catalytically active CuCl species. Mechanistic investigations and DFT calculation studies revealed that the stereoselectivity is controlled by the thermodynamic stabilities of the in situ-generated cyclic alkenyl CuII complex intermediate, which can serve as a chlorine atom transfer agent.

12.
Chem Sci ; 13(42): 12367-12373, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36382279

ABSTRACT

CoF2, with a relatively high theoretical capacity (553 mA h g-1), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF2 and CoF2-based nano-heterostructures have been rarely reported. In this direction, an eco-friendly and precisely controlled colloidal synthesis strategy to grow uniformly sized CoF2 nanorods and LiF-tipped CoF2-nanorod heterostructures based on a seeded-growth method is established. The unveiled selective growth of LiF nanoparticles onto the two end tips of the CoF2 nanorods is associated with the higher energy of tips, which favors the nucleation of LiF nanocrystals. Notably, it was found that LiF could protect CoF2 from corrosion even after 9 months of aging. In addition, the as-obtained heterostructures were employed in supercapacitors and lithium sulfur batteries as cathode materials. The heterostructures consistently exhibited higher specific capacities than the corresponding two single components in both types of energy storage devices, making it a potential electrode material for energy storage applications.

13.
Front Immunol ; 13: 981784, 2022.
Article in English | MEDLINE | ID: mdl-36405762

ABSTRACT

The dysfunctional immune response and multiple organ injury in sepsis is a recurrent theme impacting prognosis and mortality, while the lung is the first organ invaded by sepsis. To systematically elucidate the transcriptomic changes in the main constituent cells of sepsis-injured lung tissue, we applied single-cell RNA sequencing to the lung tissue samples from septic and control mice and created a comprehensive cellular landscape with 25044 cells, including 11317 immune and 13727 non-immune cells. Sepsis alters the composition of all cellular compartments, particularly neutrophils, monocytes, T cells, endothelial, and fibroblasts populations. Our study firstly provides a single-cell view of cellular changes in septic lung injury. Furthermore, by integrating bulk sequencing data and single-cell data with the Scissors-method, we identified the cell subpopulations that are most associated with septic lung injury phenotype. The phenotypic-related cell subpopulations identified by Scissors-method were consistent with the cell subpopulations with significant composition changes. The function analysis of the differentially expressed genes (DEGs) and the cell-cell interaction analysis further reveal the important role of these phenotype-related subpopulations in septic lung injury. Our research provides a rich resource for understanding cellular changes and provides insights into the contributions of specific cell types to the biological processes that take place during sepsis-induced lung injury.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , Acute Lung Injury/genetics , Sepsis/complications , Sepsis/genetics , Lung , Phenotype , Neutrophils
14.
Front Public Health ; 10: 987276, 2022.
Article in English | MEDLINE | ID: mdl-36159230

ABSTRACT

Background: Acupuncture is increasingly used as adjuvant therapy for infertile women undergoing frozen-thawed embryo transfer (FET); however, its effects and safety are highly controversial. This study aimed to evaluate the pooled effects of adjuvant acupuncture on FET pregnancy outcomes. Methods: We considered only randomized controlled trials (RCTs) that compared acupuncture with sham acupuncture or no adjuvant treatment during FET and the primary outcome was clinical pregnancy rate. Two authors separately selected studies, extracted data, and performed a risk of bias assessment. Pooled data were expressed as risk ratio (RR) or mean difference (MD), with a 95% confidence interval (CI). In addition, we conducted subgroup and sensitivity analyses to investigate the sources of heterogeneity, and we also constructed funnel plots to assess the likelihood of publication bias. Finally, Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) was applied to evaluate the quality of evidence. Results: A total of 14 RCTs with a total of 1,130 participants were included in the study. We found significant effects of acupuncture adjuvant to FET on the outcomes of clinical pregnancy rate (RR = 1.54, 95% CI [1.28, 1.85], I 2 = 34%; 14 trials), biochemical pregnancy rate (RR = 1.51, 95% CI [1.21, 1.89]; 5 trials), endometrial thickness (MD = 0.97, 95% CI [0.43, 1.51]; 12 trials), and endometrial pattern (RR = 1.41, 95% CI [1.13, 1.75]; 7 trials). For live birth rate (RR = 1.48, 95% CI [0.90, 2.43], 4 trials), there were no statistical effectiveness. For subgroup analyses, most variables had tolerable heterogeneity (I 2 = 0%) except for trials that were sham-controlled, performed acupuncture only after FET, or <5 times, which appeared to interpret most of the heterogeneity. Additionally, the quality of evidence of all outcomes in this review ranged from low to moderate. Conclusion: Acupuncture could be instrumental in the pregnancy outcomes of FET, and has very few risks of severe adverse events; however, the quality of evidence is unsatisfactory. Further research with rigorous methodological quality should be considered, and the protocols of acupuncture also need more investigations (e.g., appropriate control groups, sessions, and times).


Subject(s)
Acupuncture Therapy , Pregnancy Outcome , Embryo Transfer/methods , Female , Humans , Pregnancy , Pregnancy Rate
15.
Trop Med Infect Dis ; 7(9)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36136652

ABSTRACT

BACKGROUND: The greatest challenges are imposed on the overall capacity of disease management when the cases reach the maximum in each wave of the pandemic. METHODS: The cases and deaths for the four waves of COVID-19 in 119 countries and regions (CRs) were collected. We compared the mortality across CRs where populations experience different economic and healthcare disparities. FINDINGS: Among 119 CRs, 117, 112, 111, and 55 have experienced 1, 2, 3, and 4 waves of COVID-19 disease, respectively. The average mortality rates at the disease turning point were 0.036, 0.019. 0.017, and 0.015 for the waves 1, 2, 3, and 4, respectively. Among 49 potential factors, income level, gross national income (GNI) per capita, and school enrollment are positively correlated with the mortality rates in the first wave, but negatively correlated with the rates of the rest of the waves. Their values for the first wave are 0.253, 0.346 and 0.385, respectively. The r value for waves 2, 3, and 4 are -0.310, -0.293, -0.234; -0.263, -0.284, -0.282; and -0.330, -0.394, -0.048, respectively. In high-income CRs, the mortality rates in waves 2 and 3 were 29% and 28% of that in wave 1; while in upper-middle-income CRs, the rates for waves 2 and 3 were 76% and 79% of that in wave 1. The rates in waves 2 and 3 for lower-middle-income countries were 88% and 89% of that in wave 1, and for low-income countries were 135% and 135%. Furthermore, comparison among the largest case numbers through all waves indicated that the mortalities in upper- and lower-middle-income countries is 65% more than that of the high-income countries. INTERPRETATION: Conclusions from the first wave of the COVID-19 pandemic do not apply to the following waves. The clinical outcomes in developing countries become worse along with the expansion of the pandemic.

16.
Front Immunol ; 13: 869207, 2022.
Article in English | MEDLINE | ID: mdl-35911777

ABSTRACT

Acute pancreatitis (AP) is a common cause of a clinically acute abdomen. Crosstalk between acinar cells and leukocytes (especially macrophages) plays an important role in the development of AP. However, the mechanism mediating the interaction between acinar cells and macrophages is still unclear. This study was performed to explore the role of acinar cell extracellular vesicles (EVs) in the crosstalk between acinar cells and macrophages involved in the pathogenesis of AP. EVs derived from caerulein-treated acinar cells induced macrophage infiltration and aggravated pancreatitis in an AP rat model. Further research showed that acinar cell-derived EV miR-183-5p led to M1 macrophage polarization by downregulating forkhead box protein O1 (FoxO1), and a dual-luciferase reporter assay confirmed that FoxO1 was directly inhibited by miR-183-5p. In addition, acinar cell-derived EV miR-183-5p reduced macrophage phagocytosis. Acinar cell-derived EV miR-183-5p promoted the pancreatic infiltration of M1 macrophages and increased local and systemic damage in vivo. Subsequently, miR-183-5p overexpression in macrophages induced acinar cell damage and trypsin activation, thus further exacerbating the disease. In clinical samples, elevated miR-183-5p levels were detected in serum EVs and positively correlated with the severity of AP. EV miR-183-5p might play an important role in the development of AP by facilitating M1 macrophage polarization, providing a new insight into the diagnosis and targeted management of pancreatitis. Graphical abstract of the present study. In our caerulein-induced AP model, miR-183-5p was upregulated in injured acinar cells and transported by EVs to macrophages. miR-183-5p could induce M1 macrophage polarization through downregulation of FoxO1 and the release of inflammatory cytokines, which could aggravate AP-related injuries. Therefore, a vicious cycle might exist between injured ACs and M1 macrophage polarization, which is fulfilled by EV-transported miR-183-5p, leading to sustainable and progressive AP-related injuries.


Subject(s)
Extracellular Vesicles , MicroRNAs , Pancreatitis , Acinar Cells/metabolism , Acute Disease , Animals , Ceruletide/toxicity , Down-Regulation , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Pancreatitis/genetics , Pancreatitis/metabolism , Rats
17.
Nat Commun ; 13(1): 5065, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038619

ABSTRACT

The oxidative dehydrogenation of propane using CO2 (CO2-ODP) is a promising technique for high-yield propylene production and CO2 utilization. The development of a highly efficient catalyst for CO2-ODP is of great interest and benefit to the chemical industry as well as net zero emissions. Here, we report a unique catalyst material and design concept based on high-entropy intermetallics for this challenging chemistry. A senary (PtCoNi)(SnInGa) catalyst supported on CeO2 with a PtSn intermetallic structure exhibits a considerably higher catalytic activity, C3H6 selectivity, long-term stability, and CO2 utilization efficiency at 600 °C than previously reported. Multi-metallization of the Pt and Sn sites by Co/Ni and In/Ga, respectively, greatly enhances propylene selectivity, CO2 activation ability, thermal stability, and regenerable ability. The results obtained in this study can promote carbon-neutralization of industrial processes for light alkane conversion.

18.
Nutrients ; 14(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35956423

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a subtype of nonalcoholic fatty liver disease (NAFLD). Either Lycium barbarum polysaccharide (LBP) or aerobic exercise (AE) has been reported to be beneficial to hepatic lipid metabolism. However, whether the combination of LBP with AE improves lipid accumulation of NASH remains unknown. Our study investigated the influence of 10 weeks of treatment of LBP, AE, and the combination (LBP plus AE) on high-fat-induced NASH in Sprague-Dawley rats. The results showed that LBP or AE reduced the severity of the NASH. LBP plus AE treatment more effectively ameliorated liver damage and lowered levels of serum lipid and inflammation. In addition, the combination can also regulate genes involved in hepatic fatty acid synthesis and oxidation. LBP plus AE activated AMPK, thereby increasing the expression of PPARα which controls hepatic fatty acid oxidation and its coactivator PGC-1α. Our study demonstrated the improvement of LBP plus AE on NASH via enhancing fatty acid oxidation (FAO) which was dependent on AMPK/PPARα/PGC-1α pathway.


Subject(s)
Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Dietary Supplements , Drugs, Chinese Herbal , Fatty Acids/metabolism , Lipids/pharmacology , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , PPAR alpha/metabolism , Rats , Rats, Sprague-Dawley
19.
Cell Signal ; 97: 110398, 2022 09.
Article in English | MEDLINE | ID: mdl-35811055

ABSTRACT

BACKGROUND: The inappropriate apoptosis of macrophages plays an important role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. As an endogenous apoptosis pathway, endoplasmic reticulum (ER) stress plays an important role in cell damage in patients with sepsis. Clarifying the ER stress response and its effect on macrophages during the development of sepsis is helpful to explore new strategies for the prevention and treatment of ALI in sepsis. METHODS: The mouse model and the RAW264.7 inflammation model were stimulated with LPS to establish in vivo and in vitro. We explored the effects of different expression levels of silent information regulator factor 2-related enzyme 1 (SIRT1) on the ER stress response and apoptosis of macrophages in the sepsis-related injury model. RESULTS: Our studies found that the increased expression of SIRT1 can significantly improve sepsis-related lung injury and relieve lung inflammation. SRT1720, a SIRT1 activator, can significantly inhibit the ER stress response of lung tissue and macrophages, inhibit the expression of pro-apoptotic proteins, promote the expression of anti-apoptotic proteins, and reduce macrophages of apoptosis. While the EX527, an inhibitor of SIRT1, had the opposite effect. CONCLUSION: SIRT1 can significantly improve sepsis-associated lung injury and LPS-induced macrophage apoptosis. This protective effect is closely related to its inhibition of the ER stress response via the PERK/eIF2-α/ATF4/CHOP pathway.


Subject(s)
Acute Lung Injury , Sepsis , Acute Lung Injury/metabolism , Animals , Apoptosis , Endoplasmic Reticulum Stress , Lipopolysaccharides/pharmacology , Lung/metabolism , Macrophages/metabolism , Mice , Sepsis/complications , Sirtuin 1/metabolism
20.
Front Pharmacol ; 13: 862502, 2022.
Article in English | MEDLINE | ID: mdl-35662734

ABSTRACT

Objective: Necroptosis represents a new target for cancer immunotherapy and is considered a form of cell death that overcomes apoptosis resistance and enhances tumor immunogenicity. Herein, we aimed to determine necroptosis subtypes and investigate the roles of necroptosis in pancreatic cancer therapy. Methods: Based on the expression of prognostic necroptosis genes in pancreatic cancer samples from TCGA and ICGC cohorts, a consensus clustering approach was implemented for robustly identifying necroptosis subtypes. Immunogenic features were evaluated according to immune cell infiltrations, immune checkpoints, HLA molecules, and cancer-immunity cycle. The sensitivity to chemotherapy agents was estimated using the pRRophetic package. A necroptosis-relevant risk model was developed with a multivariate Cox regression analysis. Results: Five necroptosis subtypes were determined for pancreatic cancer (C1∼C5) with diverse prognosis, immunogenic features, and chemosensitivity. In particular, C4 and C5 presented favorable prognosis and weakened immunogenicity; C2 had high immunogenicity; C1 had undesirable prognosis and high genetic mutations. C5 was the most sensitive to known chemotherapy agents (cisplatin, gemcitabine, docetaxel, and paclitaxel), while C4 displayed resistance to aforementioned agents. The necroptosis-relevant risk model could accurately predict prognosis, immunogenicity, and chemosensitivity. Conclusion: Our findings provided a conceptual framework for comprehending necroptosis in pancreatic cancer biology. Future work is required for evaluating its relevance in the design of combined therapeutic regimens and guiding the best choice for immuno- and chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...