Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 235: 119860, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934537

ABSTRACT

An Fe-based catalyst was prepared by oxidising waste Fe shavings directly in a solution. In engineering applications, Fe shavings were compressed and modified to form Fe-based monolithic catalyst packing. Both of which exhibited excellent catalytic activity in catalytic ozonation industrial wastewater after biochemical treatment. Fe-based monolithic catalyst packing has irregular channels, large porosity, small pore diameter, and the effective specific surface area (SSA) up to 3500 m2/m3, these characteristics are conducive to mass transfer, and promote the effective utilisation of •OH in the catalyst "action zone". A tower reactor (<3000 m3/d) and reinforced concrete construction reactor (>5000 m3/d) were designed according to the wastewater flow. Regression analysis showed that hydraulic residence time (HRT) and O3/CODin are important parameters in engineering design and operation. In addition, strategies for the application of Fe-based monolithic catalyst packing to wastewater with high salinity and high inorganic carbon concentration have been proposed. Fe-based monolithic catalyst packing catalytic ozonation is a relatively cost-effective and eco-friendly process with extremely broad application prospects in the advanced treatment of industrial wastewater.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Wastewater , Iron/analysis , Water Pollutants, Chemical/analysis , Catalysis
2.
Sci Rep ; 8(1): 7555, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765092

ABSTRACT

A pilot scale reactor with an effective volume of 2.93 m3 was built in-situ and run in both batch and continuous modes to investigate the removal for organic pollutants in bio-treated dyeing and finishing wastewater by heterogeneous catalytic ozonation under neutral pH with waste iron shavings as a catalyst. Experimental results showed that both running modes were able to reduce the chemical oxygen demand (COD) from 132-148 mg/L to a level below the discharge criteria (<80 mg/L) within 15-30 mins under several conditions. Specifically, significantly organic removal was observed with COD, soluble COD (sCOD) and dissolved organic carbon (DOC) decreased from the initial 165, 93 and 76 mg/L to 54, 28 and 16 mg/L respectively, when treated by 10.2 g-O3/min of ozone dosage at a hydraulic retention time of 30 mins under continuous mode. 80% proteins and 85% polysaccharides were removed with a decrease in their contribution to sCOD from 69% to 43%. Mineralization as well as conversion of high molecular organic compounds was observed through Gas Chromatography-Mass Spectrometer (GC-MS) & Liquid Chromatography-Mass Spectrometer (LC-MS) analysis, which led to a decrease of inhibitory effect from 29% to 25%, suggesting a reduction in the acute toxicity.

3.
AMB Express ; 7(1): 3, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28050844

ABSTRACT

The concentration of total nitrogen (TN) (between 40 and 60 mg/L, mainly nitrate) in the biological and catalytic ozonation treated dyeing and finishing wastewater needs to be reduced before discharge. The present study investigated the feasibility of using waste iron shavings as electron donor for nitrogen removal by biological denitrification. Two anoxic sequencing batch reactors (AnSBR) were continuously operated for more than 100 days. The results showed that the TN removal efficiency increased from 12% in the control reactor (AnSBR-C) to 20% in the reactor with waste iron shavings (AnSBR-Fe). The TN removal was mainly achieved by the reduction of nitrate by heterotrophic denitrification and autotrophic denitrification for AnSBR-Fe. The residual COD (38.4 mg/L) in the effluent of AnSBR-Fe was higher than that (22 mg/L) in the effluent of AnSBR-C, which could be due to that the bacteria preferred to use iron instead of the recalcitrant organics that present in the wastewater. Furthermore, 3DEEM, UHPLC-QTOF and GC-MS analysis were used to characterize the organics in the wastewater, and the results showed that the addition of waste iron shavings affected the degradation of organics during the biological denitrification process.

SELECTION OF CITATIONS
SEARCH DETAIL
...