Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(17): e2307034, 2024 May.
Article in English | MEDLINE | ID: mdl-38353386

ABSTRACT

Exchange bias is extensively studied and widely utilized in spintronic devices, such as spin valves and magnetic tunnel junctions. 2D van der Waals (vdW) magnets, with high-quality interfaces in heterostructures, provide an excellent platform for investigating the exchange bias effect. To date, intrinsic modulation of exchange bias, for instance, via precise manipulation of the magnetic phases of the antiferromagnetic layer, is yet to be fully reached, owing partly to the large exchange fields of traditional bulk antiferromagnets. Herein, motivated by the low-field spin-flop transition of a 2D antiferromagnet, CrPS4, exchange bias is explored by modulating the antiferromagnetic spin-flop phase transition in all-vdW magnetic heterostructures. The results demonstrate that undergoing the spin-flop transition during the field cooling process, the A-type antiferromagnetic ground state of CrPS4 turns into a canted antiferromagnetic one, therefore, it reduces the interfacial magnetic coupling and suppresses the exchange bias. Via conducting different cooling fields, one can select the exchange bias effect switching among the "ON", "depressed", and "OFF" states determined by the spin flop of CrPS4. This work provides an approach to intrinsically modulate the exchange bias in all-vdW heterostructures and paves new avenues to design and manipulate 2D spintronic devices.

2.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38266644

ABSTRACT

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Subject(s)
Brain , Neurons , Mice , Animals , Phosphorylation , Brain/metabolism , Neurons/physiology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Pyruvates/metabolism , Genes, Immediate-Early
3.
Small ; 20(13): e2307298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37972284

ABSTRACT

As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2. Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.

4.
Adv Mater ; 36(5): e2305604, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37789724

ABSTRACT

Chiral-induced spin selectivity (CISS) effect provides innovative approach to spintronics and quantum-based devices for chiral materials. Different from the conventional ferromagnetic devices, the application of CISS effect is potential to operate under room temperature and zero applied magnetic field. Low dimensional chiral perovskites by introducing chiral amines are beginning to show significant CISS effect for spin injection, but research on chiral perovskites is still in its infancy, especially on spin-light emitting diode (spin-LED) construction. Here, the spin-QLEDs enabled by 2D chiral perovskites as CISS layer for spin-dependent carrier injection and CdSe/ZnS quantum dots (QDs) as light emitting layer are reported. The regulation pattern of the chirality and thickness of chiral perovskites, which affects the circularly polarized electroluminescence (CP-EL) emission of spin-QLED, is discovered. Notably, the spin injection polarization of 2D chiral perovskites is higher than 80% and the CP-EL asymmetric factor (gCP-EL ) achieves up to 1.6 × 10-2 . Consequently, this work opens up a new and effective approach for high-performance spin-LEDs.

5.
Nature ; 623(7986): 387-396, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914931

ABSTRACT

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.


Subject(s)
Heart , Reflex , Sensory Receptor Cells , Syncope , Vagus Nerve , Humans , Area Postrema , Bradycardia/complications , Bradycardia/physiopathology , Cardiac Output, Low/complications , Cardiac Output, Low/physiopathology , Echocardiography , Heart/physiology , Heart Rate , Hypotension/complications , Hypotension/physiopathology , Laser-Doppler Flowmetry , Nerve Net , Reflex/physiology , Sensory Receptor Cells/physiology , Single-Cell Gene Expression Analysis , Syncope/complications , Syncope/etiology , Vagus Nerve/cytology , Vagus Nerve/physiology
6.
Int J Biol Macromol ; 247: 125727, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37429347

ABSTRACT

Drug delivery systems have emerged as a prominent research focus in the field of drug development, offering enhanced stability and improved bioavailability. Among them, protein (silk, gelatin and whey) or polysaccharide (alginate, chitosan, cellulose, starch, pectin and carrageenan) aerogels derived from natural sources have gained increasing popularity due to their unique advantages, such as cost-effectiveness, flexible preparation, bioactivity, biocompatibility, and biodegradability. However, despite their growing significance, there remains a lack of comprehensive information and ongoing confusion regarding the application of protein/polysaccharide aerogels in drug delivery system. Hence, the objective of this review was to provide a comprehensive review of the research progress in protein/polysaccharide aerogels for drug delivery systems from the perspective of aerogels category, synthesis strategy, drug-loading method, performance characteristic and release mechanism. Furthermore, by consolidating the existing information, we aimed to present our own perspectives and insights on the future development of protein/polysaccharide aerogels in drug delivery system. In conclusion, this comprehensive review served as a valuable resource for researchers and scholars, addressing the current gaps in knowledge and clarifying the complex landscape of protein/polysaccharide aerogels in drug delivery system.


Subject(s)
Drug Delivery Systems , Polysaccharides , Gels , Cellulose , Alginates
7.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993270

ABSTRACT

For decades, the expression of immediate early genes (IEGs) such as c- fos has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity (i.e., inhibition). Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected neuronal inhibition across the brain induced by a wide range of factors including general anesthesia, sensory experiences, and natural behaviors. Thus, as an in vivo marker for neuronal inhibition, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.

8.
Nanoscale ; 15(7): 3430-3437, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727441

ABSTRACT

In quantum dot light-emitting diodes (QLEDs), even seemingly with interfacial exciton quenching between quantum dots (QDs) and the electron transport layer (ETL) limiting the device efficiency, the internal quantum efficiency of such QLEDs approaches 100%. Therefore, it is a puzzle that QLEDs exhibit high performance although they suffer from interfacial exciton quenching. In this work, we solve this puzzle by identifying the cause of the interfacial exciton quenching. By analyzing the optical characteristics of pristine and encapsulated QD-ETL films, the interfacial exciton quenching in the pristine QD-ETL film is attributed to O2-induced charge transfer. We further investigate the charge transfer mechanism and its effect on the performance of QLEDs. Finally, we show the photodegradation of the pristine QD-ETL film under UV irradiation. Our work bridges interfacial exciton quenching and high performance in hybrid QLEDs and highlights the significance of encapsulation in QLEDs.

9.
ACS Appl Mater Interfaces ; 15(1): 1619-1628, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36574641

ABSTRACT

InP quantum dots (QDs) are the most competitive in terms of environmentally friendly QDs. However, the synthesis of InP QDs requires breakthroughs in low-cost and safe phosphorus precursors such as tri(dimethylamino)phosphine [(DMA)3P]. It is found that even if the oxygen is completely avoided, there are still oxidation state defects at the core/shell interface of InP QDs. Herein, the record-breaking (DMA)3P-based red InP QDs were synthesized with the assist of HF processing to eliminate the InPOx defect and improve the fluorescence efficiency. The maximum photoluminescence quantum yield was 97.7%, which is the highest of the red InP QDs synthesized by the aminophosphine. The external quantum efficiency and brightness of the QD light-emitting diode device are also improved accordingly from 0.6% and 1276 cd·m-2 to 3.5% and 2355 cd·m-2, respectively.

10.
Opt Express ; 29(22): 36964-36976, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34809094

ABSTRACT

The mechanisms for energy transfer including Förster resonance energy transfer (FRET) and radiative energy transfer in ternary-emissive system consists of blended-quantum dots (QDs, red-QDs blended with blue-QDs) emissive layer (EML) and blue-emissive hole-transport material that contained in quantum dot light-emitting diodes (QLEDs) are complicated. As the energy transfer could exhibit either positive or negative impact on QD's photoluminescence (PL) and electroluminescence (EL), it is important to analyze and modulate energy transfer in such ternary-emissive system to obtain high-efficiency QLEDs. In this work, we have demonstrated that proper B-QDs doping has a positive impact on R-QDs' PL and EL, where these improvements were attributed to the B-QDs' spacing effect on R-QDs which weakens homogeneous FRET among R-QDs and near 100% efficient heterogeneous FRET from B-QDs to R-QDs. With optimization based on the analysis of energy transfer, the PL quantum yield of blended-QDs (with R:B blending ratio of 90:10, in quality) film has been enhanced by 35% compared with that of unblended R-QDs film. Moreover, thanks to the spacing effect and high-efficiency FRET from B-QDs to R-QDs, the external quantum efficiency of QLEDs that integrate optimized blended-QDs (R:B=90:10) EML reaches 22.1%, which is 15% higher than that of the control sample (19.2%) with unblended R-QDs EML. This work provides a systematically analytical method to study the energy transfer in ternary-emissive system, and gives a valid reference for the analysis and development of the emerging QLEDs that with blended-QDs EML.

11.
Int J Biol Macromol ; 182: 343-353, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33794241

ABSTRACT

A large amount of protein impurity severely restricts the application of polysaccharides of Ruditapes philippinarum (PRP) in food and medicine. Moreover, the traditional Sevag deproteinization method always involves organic reagents. The purpose of this paper was to develop an effective, green and mild deproteinization method from PRP by attapulgite-based silk fibroin composite aerogel (ASA). Firstly, ASA was synthesized and applied to remove protein from PRP. Secondly, the deproteinization parameters were optimized with selectivity coefficient as index as follows: dose of ASA 1% and pH 7.0. Under these conditions, deproteinization ratio (Dr%), polysaccharide recovery ratio (Rr%) and selectivity coefficient (Kc) reached 79.44 ± 1.87%, 95.81 ± 2.95% and 18.95 ± 1.55, respectively. Next, the feasibility of ASA method was evaluated. As a result, ASA method not only achieved higher deproteinization efficiency in less time compared with Sevag method, but also retained structure and antioxidant activity of polysaccharides. ASA was also proven with recycling ability and could be reused more than five times. Furthermore, it was found that protein adsorption on ASA was better fitted by pseudo second-order kinetic and Freundlich model. Taking together, the data implied that ASA method would be promising of deproteinization from PRP suitable for polysaccharides processing.


Subject(s)
Bivalvia/chemistry , Fibroins/chemistry , Gels/chemistry , Magnesium Compounds/chemistry , Polysaccharides/isolation & purification , Silicon Compounds/chemistry , Animals , Antioxidants/pharmacology , Carbohydrate Conformation , Kinetics , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Shellfish/analysis , Silk/chemistry
12.
Neurochem Res ; 42(11): 3268-3278, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28831640

ABSTRACT

Glucocorticoid receptors (GRs) exert actions on the hippocampus that are important for memory formation. There are correlations between vascular dysfunctions and GR-related gene expression. Both vascular dysfunction and GR gene expression decline occur during the ageing process. Therefore, hypotensors, which have effects on improving vascular dysfunction, may be able to ameliorate GR gene expression decline in ageing mice and improve ageing-mediated memory deficits. In this study, we hypothesized that hypotensors could alleviate the decline of GR gene expression and ameliorate age-induced learning and memory deficits in a D-gal-induced ageing mice model. In line with our hypothesis, we found that chronic D-gal treatment decreased GR and DCX expression in the hippocampus, leading to learning and memory deficits. Amlodipine (AM) and puerarin (PU) treatment improved GR gene expression decline in the hippocampus and ameliorated the learning and memory deficits of D-gal-treated mice. These changes correlated with enhanced DCX expression and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Furthermore, PU treatment conveyed better effects than AM treatment, but combination therapy did not enhance the effects on improving GR expression. However, we did not find evidence of these changes in non-D-gal-treated mice that lacked GR gene expression decline. These results suggest that AM and PU could improve D-gal-induced behavioural deficits in correlation with GR gene expression.


Subject(s)
Amlodipine/administration & dosage , Dentate Gyrus/metabolism , Galactose/toxicity , Isoflavones/administration & dosage , Maze Learning/physiology , Receptors, Glucocorticoid/biosynthesis , Aging/drug effects , Aging/metabolism , Aging/pathology , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/pathology , Doublecortin Protein , Drug Therapy, Combination , Female , Gene Expression , Maze Learning/drug effects , Mice , Mice, Inbred BALB C , Neurogenesis/drug effects , Neurogenesis/physiology , Receptors, Glucocorticoid/genetics , Vasodilator Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...