Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chin Med J (Engl) ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997248

ABSTRACT

BACKGROUND: The potential impact of pre-existing coronary artery stenosis (CAS) on acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and the elevation of high-sensitivity cardiac troponin I (hs-cTnI) levels in patients with PE. METHODS: In this multicenter, prospective case-control study, 88 cases and 163 controls matched for age, sex, and study center were enrolled. Cases were patients with PE with elevated hs-cTnI. Controls were patients with PE with normal hs-cTnI. Coronary artery assessment utilized coronary computed tomographic angiography or invasive coronary angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression was used to evaluate the association between CAS and hs-cTnI elevation. RESULTS: The percentage of CAS was higher in the case group compared to the control group (44.3% [39/88] vs. 30.1% [49/163]; P = 0.024). In multivariable conditional logistic regression model 1, CAS (adjusted odds ratio [OR], 2.680; 95% confidence interval [CI], 1.243-5.779), heart rate >75 beats/min (OR, 2.306; 95% CI, 1.056-5.036) and N-terminal pro-B type natriuretic peptide (NT-proBNP) >420 pg/mL (OR, 12.169; 95% CI, 4.792-30.900) were independently associated with elevated hs-cTnI. In model 2, right CAS (OR, 3.615; 95% CI, 1.467-8.909) and NT-proBNP >420 pg/mL (OR, 13.890; 95% CI, 5.288-36.484) were independently associated with elevated hs-cTnI. CONCLUSIONS: CAS was independently associated with myocardial injury in patients with PE. Vigilance towards CAS is warranted in patients with PE with elevated cardiac troponin levels.

2.
Eur J Pharmacol ; 970: 176492, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503401

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Familial Primary Pulmonary Hypertension , Glycolysis , Lung/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling
3.
Hypertension ; 81(2): 372-382, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116660

ABSTRACT

BACKGROUND: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is multifactorial and growing evidence has indicated that hematological disorders are involved. Clonal hematopoiesis of indeterminate potential (CHIP) has recently been associated with an increased risk of both hematological malignancies and cardiovascular diseases. However, the prevalence and clinical relevance of CHIP in patients with CTEPH remains unclear. METHODS: Using stepwise calling on next-generation sequencing data from 499 patients with CTEPH referred to 3 centers between October 2006 and December 2021, CHIP mutations were identified. We associated CHIP with all-cause mortality in patients with CTEPH. To provide insights into potential mechanisms, the associations between CHIP and inflammatory markers were also determined. RESULTS: In total, 47 (9.4%) patients with CTEPH carried at least 1 CHIP mutation at a variant allele frequency of ≥2%. The most common mutations were in DNMT3A, TET2, RUNX1, and ASXL1. During follow-up (mean, 55 months), deaths occurred in 22 (46.8%) and 104 (23.0%) patients in the CHIP and non-CHIP groups, respectively (P<0.001, log-rank test). The association of CHIP with mortality remained robust in the fully adjusted model (hazard ratio, 2.190 [95% CI, 1.257-3.816]; P=0.006). Moreover, patients with CHIP mutations showed higher circulating interleukin-1ß and interleukin-6 and lower interleukin-4 and IgG galactosylation levels. CONCLUSIONS: This is the first study to show that CHIP mutations occurred in 9.4% of patients with CTEPH are associated with a severe inflammatory state and confer a poorer prognosis in long-term follow-up.


Subject(s)
Cardiovascular Diseases , Hypertension, Pulmonary , Humans , Clonal Hematopoiesis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , Hematopoiesis/genetics , Cardiovascular Diseases/genetics , Mutation
4.
Vascul Pharmacol ; 153: 107216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37699495

ABSTRACT

Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Pulmonary Arterial Hypertension , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Lung/pathology , Transcription Factors/metabolism , Vascular Remodeling , Pulmonary Artery
SELECTION OF CITATIONS
SEARCH DETAIL
...