Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 23, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36647013

ABSTRACT

BACKGROUND: It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS: The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS: Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.


Subject(s)
Ailuridae , Diet , Ursidae , Animals , Diet/veterinary , Gene Expression , Lysine/metabolism , Ursidae/genetics , Ursidae/metabolism , Ailuridae/genetics , Ailuridae/metabolism
2.
PLoS One ; 17(6): e0268064, 2022.
Article in English | MEDLINE | ID: mdl-35653382

ABSTRACT

The complete mitochondrial genome of Episymploce splendens, 15,802 bp in length, was determined and annotated in this study. The mito-genome included 13 PCGs, 20 tRNAs and 2 rRNAs. Unlike most typical mito-genomes with conservative gene arrangement and exceptional economic organization, E. splendens mito-genome has two tRNAs (tRNA-Gln and tRNA-Met) absence and a long intergenic spacer sequence (93 bp) between tRNA-Val and srRNA, showing the diversified features of insect mito-genomes. This is the first report of the tRNAs deletion in blattarian mito-genomes and we supported the duplication/random loss model as the origin mechanism of the long intergenic spacer. Two Numts, Numt-1 (557 bp) and Numt-2 (975 bp) transferred to the nucleus at about 14.15 Ma to 22.34 Ma, and 19.19 Ma to 24.06 Ma respectively, were found in E. splendens. They can be used as molecular fossils in insect phylogenetic relationship inference. Our study provided useful data for further studies on the evolution of insect mito-genome.


Subject(s)
Blattellidae , Genome, Mitochondrial , Animals , Blattellidae/genetics , DNA, Intergenic/genetics , Gene Order , Genome, Mitochondrial/genetics , Phylogeny , RNA, Transfer/genetics
3.
Genomics ; 114(3): 110342, 2022 05.
Article in English | MEDLINE | ID: mdl-35306168

ABSTRACT

Giant pandas are unique within Carnivora with a strict bamboo diet. Here, the epigenomic profiles of giant panda liver and pancreas tissues collected from three important feeding stages were investigated using BS-seq. Few differences in DNA methylation profiles were exhibited between no feeding and suckling groups in both tissues. However, we observed a tendency toward a global loss of DNA methylation in the gene-body and promoter region of metabolism-related genes from newborn to adult. Correlation analysis revealed a significant negative correlation between the changes in methylation levels within gene promoters and gene expression. The majority of genes related to nutrition metabolism had lost DNA methylation with increased mRNA expression in adult giant pandas. The few galactose metabolism and unsaturated fatty acid metabolism related genes that were hypomethylated and highly-expressed at early stages of giant panda development may meet the nutritional requirement of this species' highly altricial neonates.


Subject(s)
Ursidae , Animals , Humans , Infant, Newborn , Ursidae/genetics , Ursidae/metabolism , DNA Methylation , Epigenomics , Liver/metabolism , Pancreas/metabolism
4.
Aging (Albany NY) ; 12(15): 15705-15729, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32805731

ABSTRACT

Giant pandas are unique Carnivora with a strict bamboo diet. To investigate the molecular mechanism of giant panda nutrient metabolism from newborn to adult, the gene expression profiles of giant panda liver and pancreas tissues collected from three important feeding stages were investigated using RNA-seq. We found a total of 3,211 hepatic and 3,343 pancreatic differentially expressed genes (DEGs) from three comparisons between suckling and no feeding, adult and no feeding, and adult and suckling groups. Few differences in gene-expression profiles were exhibited between no feeding and suckling groups in both tissues. GO and KEGG analyses were performed to further understand the biological functions of the DEGs. In both the liver and pancreas, genes related mainly to cell cycle processes were highly up-regulated in newborn samples whereas genes related to metabolism and immunity were up-regulated in adult giant pandas. The high expression of metabolism-related genes in adult samples probably helps to fulfill the metabolic function requirements of the liver and pancreas. In contrast, several vital genes involved in cholesterol metabolism and protein digestion and absorption were over-expressed in newborn samples. This may indicate the importance of cholesterol metabolism and protein digestion and absorption processes in giant panda infancy.


Subject(s)
Gene Expression Regulation, Developmental , Liver/growth & development , Morphogenesis/genetics , Pancreas/growth & development , Transcriptome , Ursidae/genetics , Age Factors , Animals , Animals, Newborn , Digestion/genetics , Energy Metabolism/genetics , Gene Expression Profiling , Gene Regulatory Networks , Liver/metabolism , Pancreas/metabolism , Protein Interaction Maps , RNA-Seq , Signal Transduction/genetics , Ursidae/growth & development
5.
Ecol Evol ; 9(22): 12928-12939, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788226

ABSTRACT

The American cockroach (Periplaneta americana) is a globally invasive pest that can cause significant economic loss and threaten human health. Although it is abundant and lives in close proximity to humans, few studies have investigated the genetic diversity of P. americana. Our study analyzed 1,053 P. americana and other Periplaneta species' samples from different locations in China and the United States. A traditional tree-based method using 17 unique mitochondrial COI haplotypes of P. americana and 20 haplotypes of the other Periplaneta species accurately identified P. americana with a barcoding threshold of 5.1%. To identify the population genetic structure of P. americana, we investigated wingless gene and pooled them with obtained mtDNA data for a combined analysis. Although the genetic diversity of the USA group was relatively higher than the China group, the number of haplotypes and alleles of both groups was small. The analysis of molecular variance (AMOVA), intraspecific phylogeny, and haplotype networks indicated that P. americana had very little global genetic differentiation. The weak geographic genetic structure might reflect the human-mediated dispersal of P. americana. Despite no apparent phylogeographic assignment of mtDNA and nuclear lineages was observed in both BI trees, the integrated COI sequence data identified four distinct P. americana haplotype groups, showing four ancient maternal lineages of P. americana in China and the United States.

6.
Vet Microbiol ; 231: 169-176, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30955805

ABSTRACT

Purulent disease is the main factor that prevents the population increase of forest musk deer in artificial breeding, and especially the intracorporal suppurative lesions in late-stage with complex bacterial communities normally bring more difficulties for veterinary treatment. Although it is well-recognized that Pseudomonas aeruginosa and Escherichia coli are the two main bacterial pathogens which can be frequently co-isolated from the lung pus of forest musk deer, few studies have explored the interspecific relationship and coexistent mechanism of the two species. In this study, we identified a P. aeruginosa strain MYL-2, which harbored a loss-of-function mutation in the central regulator (LasR) of quorum-sensing (QS) system, from the lung pus of a dying forest musk deer with co-infecting E. coli strain MYL-58. Interestingly, P. aeruginosa MYL-2 could coexist with E. coli MYL-58 compared to the dominant role of lasR-intact P. aeruginosa strain MYL-1 in the competitive experiments. The results of in vitro coevolution assay further revealed that the QS-mediated competitive advantage of P. aeruginosa MYL-1 would be decreased along with the enrichment of lasR mutants in the communities, and P. aeruginosa could finally coexist with E. coli by forming a relatively stable equilibrium. Therefore, these findings provide an evolutionary explanation for the coexistence of P. aeruginosa and E. coli in the suppurative lesions of forest musk deer, and may also contribute to further understanding the pathology of animal purulent disease and the development of novel veterinary therapy.


Subject(s)
Deer/microbiology , Escherichia coli Infections/veterinary , Lung/microbiology , Pseudomonas Infections/veterinary , Respiratory Tract Infections/veterinary , Animals , Directed Molecular Evolution , Escherichia coli/genetics , Escherichia coli/pathogenicity , Lung/pathology , Microbiota , Mutation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing , Respiratory Tract Infections/microbiology , Suppuration/microbiology , Virulence
7.
PLoS One ; 12(5): e0177162, 2017.
Article in English | MEDLINE | ID: mdl-28486518

ABSTRACT

Complete mitochondrial genomes (mitogenomes) of two cockroach species, Periplaneta australasiae and Neostylopyga rhombifolia, 15,605 bp and 15,711 bp in length, respectively, were determined. As reported for other cockroach mitogenomes, the two mitogenomes possessed typical ancestral insect mitogenome gene composition and arrangement. Only several small intergenic spacers were found: one, which was common in all sequenced cockroach mitogenomes except for the genus Cryptocercus, was between tRNA-Ser (UCN) and ND1 and contained a 7bp highly conserved motif (WACTTAA). Three different types of short tandem repeats in the N. rhombifolia control region (CR) were observed. The homologous alignments of these tandem repeats with other six cockroach mitogenome CRs revealed a low similarity. Three conserved sequence blocks (CSB) were detected in both cockroach mitochondrial CRs. CSB1 was specific for blattinine mitogenomes and was highly conserved with 95% similarity, speculating that this block was a possible molecular synapomorphy for this subfamily. CSB3 located nearby downstream of CSB1 and has more variations within blattinine mitogenomes compared with CSB1. The CSB3 was capable of forming stable stem-loop structure with a small T-stretch in the loop portion. We assessed the influence of four datasets and two inference methods on topology within Orthopteroidea. All genes excluding the third codon positions of PCGs could generate more stable topology, and higher posterior probabilities than bootstrap values were presented at some branch nodes. The phylogenetic analysis with different datasets and analytical methods supported the monophyly of Dictyoptera and supported strongly the proposal that Isoptera should be classified as a family (Termitidae) of the Blattaria. Specifically, Shelfordella lateralis was inserted in the clade Periplaneta. Considering the K2P genetic distance, morphological characters, and the phylogenetic trees, we suggested that S. lateralis should be placed in the genus Periplaneta.


Subject(s)
Cockroaches/genetics , Genome, Mitochondrial , Phylogeny , Animals , Cockroaches/classification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...