Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 104(1): e14579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013775

ABSTRACT

Sepsis-induced acute lung injury (ALI) is a severe complication of sepsis. Karanjin, a natural flavonoid compound, has been proved to have anti-inflammatory function, but its role in sepsis-stimulated ALI is uncertain. Herein, the effect of karanjin on sepsis-stimulated ALI was investigated. We built a mouse model of lipopolysaccharide (LPS)-stimulated ALI. The histopathological morphology of lung tissues was scrutinized by hematoxylin-eosin (H&E) staining. The lung injury score and lung wet/dry weight ratio were detected. The myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were scrutinized by commercial kits. Murine alveolar lung epithelial (MLE-12) cells were treated with LPS to mimic a cellular model of ALI. The cell viability was scrutinized by the CCK-8 assay. The contents of proinflammatory cytokines were scrutinized by qRT-PCR and ELISA. The TLR4 and MyD88 contents were scrutinized by qRT-PCR and western blotting. Results showed that karanjin alleviated LPS-stimulated ALI in mice by inhibiting lung tissue lesions, edema, and oxidative stress. Moreover, karanjin inhibited LPS-stimulated inflammation and TLR4 pathway activation in mice. However, treatment with GSK1795091, an agonist of TLR4, attenuated the effects of karanjin on LPS-induced ALI. Furthermore, karanjin repressed LPS-stimulated inflammatory response and TLR4 pathway activation in MLE-12 cells. Overexpression of TLR4 attenuated karanjin effects on LPS-stimulated inflammatory responses in MLE-12 cells. In conclusion, karanjin repressed sepsis-stimulated ALI in mice by suppressing the TLR4 pathway.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Toll-Like Receptor 4/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Mice , Signal Transduction/drug effects , Male , Cell Line , Lung/pathology , Lung/metabolism , Lung/drug effects , Peroxidase/metabolism , Myeloid Differentiation Factor 88/metabolism , Malondialdehyde/metabolism , Cytokines/metabolism , Disease Models, Animal , Cell Survival/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Sulfonamides
2.
Heliyon ; 10(2): e24610, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288020

ABSTRACT

Liver fibrosis can progress to cirrhosis if left untreated. Therefore, identifying effective antifibrotic drugs is crucial. This study aimed to investigate the role and potential mechanism of metformin in treating hepatic fibrosis based on the synergistic effect of multiple targets and the "intestine-liver axis" theory. A CCl4-induced liver fibrosis mouse model was established. We measured liver function, liver fibrosis indicators, oxidative stress and inflammation indices. Hematoxylin and eosin and Masson's trichrome staining were used to detect collagen deposition. The expression of apoptotic proteins, TGF-ß/Smads and TIMP-1/MMPs was assessed. 16S rRNA and untargeted metabolomics (liquid chromatography-mass spectrometry) were used to assess mouse intestinal flora and metabolites, performing a comprehensive correlation analysis. Metformin improved the general status and liver function and decreased liver collagen deposition in CCl4-induced liver fibrotic mice. Compared with the control group, IL-6, TNF-α and COX-2 serum levels in the liver fibrosis group increased. Although not significantly different, the serum inflammatory marker levels in the metformin group were lower than those in the model group. Metformin decreased serum MDA and increased serum SOD activity, which increased and decreased, respectively, in the model group. Furthermore, metformin inhibited liver cell apoptosis, TGF-ß1 expression and TIMP-1, while promoting Smad7 expression, MMP-1 and MMP-2 in fibrotic mice. 16S rRNA analysis indicated that metformin significantly ameliorated the Bacteroides, Helicobacter, Parabacteroides and Parasutterella imbalance. We identified 385 differential metabolites between the metformin and model groups. Prevotella abundance significantly decreased in the metformin group and positively correlated with decreased taurocholic acid levels. Metformin potentially reverses liver fibrosis by inhibiting inflammation, mitigating oxidative stress damage and suppressing hepatocyte apoptosis via intestinal flora metabolite regulation. Metformin also regulates the TGF-ß/Smads and TIMP-1/MMPs signalling pathways. This study provides a theoretical basis for the clinical use of metformin in patients with liver fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...