Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919000

ABSTRACT

Aphids transmit CMV (cucumber mosaic virus) in a non-persistent manner. However, little is known about the mechanism of CMV transmission. In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control M. persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription.

2.
Pest Manag Sci ; 75(6): 1726-1733, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30525307

ABSTRACT

BACKGROUND: Insecticides act as toxins, inhibitors of digestion and deterrents, and affect the expression of many genes in insects. To assess key genes associated with the detoxification or regulation of imidacloprid in greenbug, Schizaphis graminum (Rondani), the transcriptome and digital gene expression (DGE) profile were analyzed using Illumina sequencing. RESULTS: In total, 48 763 494 clean reads were obtained by sequencing. Expression profile analysis showed that 2782 unigenes were differently expressed between the imidacloprid treatment and control groups. After exposure to imidacloprid, the expression levels of 1846 unigenes were upregulated and 936 were downregulated in comparison with controls. Expression patterns of the top 20 highly expressed genes show that they could be involved in the detoxification of imidacloprid. Silencing of multidrug resistance-associated gene (MRA), GATA-binding gene (GAT) and takeout-like precursor gene (TLP) resulted in increasing susceptibility to imidacloprid. CONCLUSIONS: The differentially expressed genes in S. graminum have potential regulatory or detoxification roles in response to imidacloprid. These results should be useful in understanding the molecular mechanisms of greenbug adaption to imidacloprid. © 2018 Society of Chemical Industry.


Subject(s)
Hemiptera/drug effects , Hemiptera/genetics , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , RNA Interference , Transcriptome/drug effects , Animals , Hemiptera/metabolism , Inactivation, Metabolic , Insect Proteins/deficiency , Insect Proteins/genetics
3.
J Econ Entomol ; 112(2): 852-858, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30590572

ABSTRACT

The cosmopolitan pest Aphis gossypii (Glover) causes considerable economic losses on various crops by its feeding damage and transmitting diseases around the world. Flupyradifurone is a novel butenolide pesticide; its toxicity on A. gossypii parent generation (F0) was estimated following treatment with LC25 concentration for 48 h. The adult longevity and fecundity of the F0 individuals treated by flupyradifurone showed no significant decrease in comparison with the control. Life table method was used to evaluate the sublethal effects on progeny population (F1). Results showed that the development time of the fourth instar and the preadult as well as the total pre-reproductive period were significantly prolonged, while their fecundity was significantly decreased compared with the control. Additionally, the intrinsic rate of increase (r), the finite rate of increase (λ), and the net reproductive rate (R0) of F1 were all significantly lower in the group treated by LC25 than in the control group. These results reveal that the sublethal concentration of flupyradifurone could suppress the population growth of A. gossypii and indicate that this novel insecticide may be as a useful tool in pest management.


Subject(s)
Aphids , Insecticides , 4-Butyrolactone/analogs & derivatives , Animals , Fertility , Pyridines
4.
Pestic Biochem Physiol ; 143: 39-47, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29183609

ABSTRACT

Myzus persicae (Sulzer) is one of the most serious agricultural pests in China, and management strategies mainly rely on insecticidal treatment. To evaluate the resistance of field populations of M. persicae to seven insecticides, we assessed the susceptibility of 11 field populations collected from eight provinces in China using leaf-dip bioassays. Toxicity assays showed that M. persicae field populations have developed several levels of resistance to each tested insecticide. For pyrethroids, the field populations have developed a high level of resistance to ß-cypermethrin and cypermethrin, while the resistance to bifenthrin is still low. The resistance ratios of field populations to imidacloprid ranged from 1.48 to 52.36, and eight populations have developed moderate to high resistance. Resistance to acetamiprid is low, and only two populations have a moderate level of resistance. Most of the field populations of M. persicae developed moderate to high resistance to methomyl and omethoate. To investigate potential resistance mechanisms, we analyzed the enzyme activity of carboxylesterases, the type of amplified esterase genes, as well as the kdr (L1014F) mutation. All of the field populations exhibited a higher esterase activity compared to the laboratory susceptible strain. An amplified FE4, as well as the L1014F mutation, were also found in all of our experimental field populations. These results provide valuable insight into the current status of insecticide resistance and will prove to be a valuable resource in designing appropriate resistance management strategies for M. persicae in China.


Subject(s)
Aphids/drug effects , Insecticide Resistance/genetics , Insecticides/toxicity , Animals , Aphids/enzymology , Aphids/genetics , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , China , Gene Frequency , Genotype , Mutation , Sodium Channels/genetics
5.
J Econ Entomol ; 110(2): 624-631, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28334129

ABSTRACT

Aphis gossypii Glover (Hemiptera: Aphididae) can damage a variety of agricultural crops, so it is very important for cotton aphids to evolve adaptive mechanisms to various allelochemicals from host plants. Our results aim to provide a fundamental and rich resource for exploring aphid functional genes in A. gossypii. A transcriptome data set and five expression profile data sets of A. gossypii samples were analyzed by Illumina sequencing platform. In total, 53,763,866 reads were assembled into 1,963,516 contigs and 28,555 unigenes. Compared with the control, 619 genes were significantly up- or downregulated in the treatment group by 2-tridecanone. There were 516, 509, and 717 of differential expression genes in tannic acid, quercetin, and gossypol treatment groups, respectively. Furthermore, there were 4 of 54 putative cytochrome P450 genes and 1 of 7 putative carboxylesterases downregulated in all treatment groups by four plant allelochemicals. When aphids fed on 2-tridecanone, tannic acid, and quercetin, only one P450 gene was upregulated. These results show that plant allelochemical stress can induce differential gene expression in A. gossypii. The differential response information of gene expression based on a large-scale sequence would be useful to reveal molecular mechanisms of adaptation for A. gossypii to plant allelochemicals.


Subject(s)
Aphids/drug effects , Aphids/genetics , Genes, Insect , Inactivation, Metabolic/genetics , Pheromones/pharmacokinetics , Animals , Aphids/physiology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Enzymes/genetics , Gene Expression Regulation/drug effects , Inactivation, Metabolic/drug effects , Molecular Sequence Annotation , Phylogeny , Transcriptome
6.
BMC Mol Biol ; 18(1): 5, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28202045

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are a group of short non-coding RNAs involved in the inhibition of protein translation or in mRNA degradation. Although the regulatory roles of miRNAs in various biological processes have been investigated, there is as yet an absence of studies about the regulatory roles of miRNAs involved in the metabolism of plant allelochemicals in insects. RESULTS: We constructed five small RNA libraries from apterous Aphis gossypii adults that had fed on an artificial diet containing various allelochemicals. Using Illumina sequencing, a total of 73.27 million clean reads was obtained, and 292 miRNAs were identified from A. gossypii. Comparative analysis of read counts indicated that both conserved and novel miRNAs were differently expressed among the five libraries, and the differential expression was validated via qRT-PCR. We found that the transcript levels of several miRNAs were increased or decreased in all of the allelochemical treatment libraries compared to the control. The putative target genes of the miRNAs were predicted using in silico tools, and the target genes of several miRNAs were presumed to be involved in the metabolism of xenobiotic compounds. Furthermore, the target prediction results were confirmed using dual luciferase reporter assay, and Ago-miR-656a-3p was demonstrated to regulate the expression of CYP6J1 post-transcriptionally through binding to the 3' UTR of CYP6J1. CONCLUSION: Our research results indicate that miRNAs may be involved in the metabolism of plant allelochemicals in A. gossypii, and these results also represent an important new small RNA genomics resource for further studies on this topic.


Subject(s)
Aphids/genetics , Gene Expression Regulation , MicroRNAs/genetics , Pheromones/metabolism , Plants/metabolism , Animals , Aphids/physiology , Stress, Physiological
7.
J Insect Sci ; 16(1)2016.
Article in English | MEDLINE | ID: mdl-28076279

ABSTRACT

To obtain accurate and reliable results from quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis, it is necessary to select suitable reference genes as standards for normalizing target gene expression data. QRT-PCR is a popular analytical methodology for studying gene expression and it has been used widely in studies of Aphis gossypii Glover in recent years. However, there is absence of study on the stability of the expression of reference genes in A. gossypii. In this study, eight commonly used candidate reference genes, including 18S, 28S, ß-ACT, GAPDH, EF1α, RPL7, α-TUB, and TBP, were evaluated under various experimental conditions to assess their suitability for use in the normalization of qRT-PCR data. The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated by performing normalizations of expression data for the HSP70 gene. The results showed the most suitable combinations of reference genes for the different experimental conditions. For experiments based on divergent developmental stages, EF1α, ß-ACT, and RPL7 are the optimal reference gene combination, both EF1α and ß-ACT are the optimal combination used in the experiments of different geographical populations, whereas for experiments of the temperature changes, the combination of GAPDH and RPL7 is optimal, both 18S and ß-ACT are an optimal combination for feeding assay experiments. These research results should be useful for the selection of the suitable reference genes to obtain reliable qRT-PCR data in the gene expression study of A. gossypii.


Subject(s)
Aphids/genetics , Gene Expression Profiling/methods , Gene Expression , Insect Proteins/genetics , Animals , Aphids/growth & development , Aphids/metabolism , Gene Expression Profiling/standards , Insect Proteins/metabolism , Nymph/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...