Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38873985

ABSTRACT

Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S­sulfhydrating caspase­1 under the stimulation of oxidized low­density lipoprotein (ox­LDL), a pro­atherosclerotic factor. Macrophages derived from THP­1 monocytes were pre­treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L­propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S­producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox­LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP­1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP­1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase­1 activity in THP­1 cells was assayed by caspase­1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase­1. Western blotting and ELISA were performed to determine the expression of pyroptosis­specific markers (NLRP3, pro­caspase­1, caspase­1, GSDMD and GSDMD­N) in cells and the secretion of pyroptosis­related cytokines [interleukin (IL)­1ß and IL­18] in the cell­free media, respectively. The S­sulfhydration of pro­caspase­1 in cells was assessed using a biotin switch assay. ox­LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro­pyroptotic effects of ox­LDL. Conversely, exogenous H2S (NaHS) ameliorated ox­LDL­and ox­LDL + PAG­induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox­LDL and the DTT increased caspase­1 activity and downstream events (IL­1ß and IL­18 secretion) of the caspase­1­dependent pyroptosis pathway by reducing S­sulfhydration of pro­caspase­1. Conversely, NaHS increased S­sulfhydration of pro­caspase­1, reducing caspase­1 activity and caspase­1­dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S­sulfhydration of pro­caspase­1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.


Subject(s)
Caspase 1 , Hydrogen Sulfide , Lipoproteins, LDL , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Pyroptosis/drug effects , Humans , Caspase 1/metabolism , Macrophages/metabolism , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Phosphate-Binding Proteins/metabolism , THP-1 Cells , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/drug effects , Gasdermins , Alkynes , Glycine/analogs & derivatives , Sulfides
2.
Neurochem Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814359

ABSTRACT

Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.

3.
Brain Res ; 1836: 148909, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38570154

ABSTRACT

BACKGROUND: Early brain injury (EBI) is closely associated with poor prognosis in patients with subarachnoid haemorrhage (SAH), with autophagy playing a pivotal role in EBI. However, research has shown that the stimulator of interferon genes (STING) pathway impacts autophagic flux. While the regulatory impact of neuritin on EBI and autophagic flux has been established previously, the underlying mechanism remains unclear. This study aimed to determine the role of the cGAS-STING pathway in neuritin-mediated regulation of autophagic flux following SAH. METHODS: A SAH model was established in male Sprague-Dawley rats via intravascular perforation. Neuritin overexpressions using adeno-associated virus, the STING antagonist "C-176," and the activator, "CMA," were determined to investigate the cGAS-STING pathway's influence on autophagic flux and brain injury post-SAH, along with the neuritin's regulatory effect on STING. In this study, SAH grade, neurological score, haematoxylin and eosin (H&E) staining, brain water content (BWC), sandwich enzyme-linked immunosorbent assay, Evans blue staining, immunofluorescence staining, western blot analysis, and transmission electron microscopy (TEM) were examined. RESULTS: Neuritin overexpression significantly ameliorated neurobehavioural scores, blood-brain barrier injury, brain oedema, and impaired autophagic flux in SAH-induced rats. STING expression remarkably increased post-SAH. C-176 and CMA mitigated and aggravated autophagic flux injury and brain injury, respectively, while inhibiting and enhancing STING, respectively. Particularly, CMA treatment nullified the protective effects of neuritin against autophagic flux and mitigated brain injury. CONCLUSION: Neuritin alleviated EBI by restoring impaired autophagic flux after SAH through the regulation of the cGAS-STING pathway.


Subject(s)
Autophagy , Brain Injuries , Membrane Proteins , Rats, Sprague-Dawley , Signal Transduction , Subarachnoid Hemorrhage , Animals , Autophagy/drug effects , Autophagy/physiology , Male , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/complications , Rats , Signal Transduction/drug effects , Signal Transduction/physiology , Brain Injuries/metabolism , Membrane Proteins/metabolism , Neuropeptides/metabolism , GPI-Linked Proteins/metabolism , Disease Models, Animal
4.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38561056

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Subject(s)
Drugs, Chinese Herbal , Glioma , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Network Pharmacology , Mice, Inbred C57BL , Signal Transduction , Glioma/drug therapy , Cell Proliferation
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 223-238, 2024 02 25.
Article in English | MEDLINE | ID: mdl-38143380

ABSTRACT

Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. ß-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of ß-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that ß-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, ß-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of ß-sitosterol on glioma. Afterward, the results show that ß-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, ß-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. ß-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that ß-sitosterol may be a promising therapeutic agent for the treatment of glioma.


Subject(s)
Glioma , Network Pharmacology , Sitosterols , Animals , Mice , Humans , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Signal Transduction , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Profiling , Apoptosis , Cell Movement
6.
Phytomedicine ; 122: 155128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37839227

ABSTRACT

BACKGROUND: Pancreatic cancer is an extremely malignant digestive tumor, however, owing to its high drug resistance of pancreatic cancer, the search for more effective anti-pancreatic cancer drugs is urgently needed. Lycorine, an alkaloid of natural plant origin, exerts antitumor effects on a variety of tumors. PURPOSE: This study aimed to investigate the therapeutic effect of lycorine on pancreatic cancer and elucidate its potential molecular mechanism. METHODS: Two pancreatic cancer cell lines, PANC-1 and BxPC-3, were used to investigate the therapeutic effects of lycorine on pancreatic cancer in vitro using the CCK8 assay, colony formation assay, 5-Ethynyl-2'- deoxyuridine (EdU) incorporation assay, flow cytometry, and western blotting. Transcriptome sequencing and gene set enrichment analysis (GSEA) were used to analyze the differentially expressed genes and pathways after lycorine treatment. Molecular docking, quantitative real-time PCR (qRT-PCR), oil red O staining, small interfering RNA (siRNA) transfection, and other experiments were performed to further validate the differentially expressed genes and pathways. In vivo experiments were conducted to investigate lycorine's inhibitory effects and toxicity on pancreatic cancer using a tumor-bearing mouse model. RESULTS: Lycorine inhibited the proliferation of pancreatic cancer cells, caused G2/M phase cycle arrest and induced apoptosis. Transcriptome sequencing and GSEA showed that lycorine inhibition of pancreatic cancer was associated with fatty acid metabolism, and aldehyde dehydrogenase 3A1 (ALDH3A1) was a significantly enriched target in the fatty acid metabolism process. ALDH3A1 expression was significantly upregulated in pancreatic cancer and was closely associated with prognosis. Molecular docking showed that lycorine binds strongly to ALDH3A1. Further studies revealed that lycorine inhibited the fatty acid oxidation (FAO) process in pancreatic cancer cells and induced cell growth inhibition and apoptosis through ALDH3A1. Lycorine also showed significant suppressive effects in tumor-bearing mice. Importantly, it did not result in significant toxicity to liver and kidney of mice, demonstrating its therapeutic potential as a safe antitumor agent. CONCLUSION: Lycorine inhibited pancreatic cancer cell proliferation, blocked the cell cycle, and induced apoptosis by targeting ALDH3A1. FAO inhibition was identified for the first time as a possible mechanism for the anticancer effects of lycorine. These findings enrich the theory of targeted therapy for pancreatic cancer, expand our understanding of the pharmacological targets of lycorine, and provide a reference for exploring its natural components.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Animals , Mice , Molecular Docking Simulation , Cell Line, Tumor , Transcriptome , Cell Proliferation , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Apoptosis , RNA, Small Interfering/pharmacology , Fatty Acids , Pancreatic Neoplasms
7.
Front Cardiovasc Med ; 10: 1155767, 2023.
Article in English | MEDLINE | ID: mdl-37396592

ABSTRACT

Objective: Here, we aimed to investigate long non-coding RNA (lncRNA) expression characteristics in the peripheral blood lymphocytes of Xinjiang Kazakh people with essential hypertension and the underlying regulatory mechanisms of competing endogenous RNAs (ceRNA). Methods: From April 2016 to May 2019, six Kazakh patients with essential hypertension and six Kazakh healthy participants were randomly selected from the inpatient and outpatient cardiology departments of the First Affiliated Hospital of Shihezi University Medical College, Xinjiang. After detecting the expression levels of lncRNA and mRNA in the peripheral blood lymphocytes using gene chip technology, their levels in the hypertensive group were compared with those in the control group. Six differentially expressed lncRNAs were randomly selected for real-time PCR to verify the accuracy and reliability of the gene chip results. GO functional clustering and KEGG pathway analyses were performed for differentially expressed genes. The ceRNA regulatory network of lncRNA-miRNA-mRNA was constructed, followed by visualization of the results. The expressions of miR-139-5p and DCBLD2 after PVT1 overexpression in 293T cells were detected by qRT-PCR and Western blot. Results: In the test group, 396 and 511 differentially expressed lncRNAs and mRNAs, respectively, were screened out. The trend of real-time PCR results was consistent with that of the microarray results. The differentially expressed mRNAs were found to be primarily involved in the adhesion spot, leukocyte migration via endothelial cells, gap junction, actin cytoskeleton regulation, and extracellular matrix-receptor interaction signaling pathways. By constructing the ceRNA regulatory network, we found that lncRNA PVT1-miR-139-5p-DCBLD2 has a potential ceRNA regulatory mechanism involved in the development of essential hypertension in Xinjiang Kazakh people. In 293T cells, lncRNA PVT1 overexpression inhibited miR-139-5p and DCBLD2 levels. Conclusions: Our findings indicate that differentially expressed lncRNAs may be involved in the development of essential hypertension. lncRNA PVT1-miR-139-5p-DCBLD2 was indicated to comprise a potential ceRNA regulatory mechanism involved in the development of essential hypertension in the Xinjiang Kazakh population. Thus, it may act as a novel screening marker or therapeutic target for essential hypertension in this population.

8.
J Mol Neurosci ; 73(7-8): 549-562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37389765

ABSTRACT

Cerebral ischemic stroke (CIS) has become the second leading cause of death worldwide, which is largely related to cerebral ischemia reperfusion injury (CIRI). Surgical intervention is a reliable treatment for CIS, which predictably causes cerebral reperfusion. Therefore, the choice of anesthetic drugs has important clinical significance. Isoflurane (ISO), one of the most used anesthetics, attenuates cognitive impairment and has brain protective effects. However, the role of isoflurane in regulating autophagy and its regulatory mechanism on inflammation in CIRI are still unclear. The middle cerebral artery occlusion (MCAO) method was used to establish a rat model of CIRI. After 24 h of reperfusion, all rats were evaluated by mNSS scoring and dark avoidance experiment. Western blotting and immunofluorescence were used to examine the expression of key proteins. Compared with the sham group, the MCAO group showed increased neurobehavioral scores and decreased cognitive memory function (P < 0.05). As for the ISO-treated MCAO rats, the neurobehavioral score was significantly decreased, the expression of AMPK, ULK1, Beclin1, and LC3B was significantly increased, and the cognitive and memory functions were also significantly improved (P < 0.05). After inhibition of autophagy pathway or key protein AMPK in autophagy, neurobehavioral scores and protein expression of NLRP3, IL-1ß, and IL-18 were significantly increased (P < 0.05). Isoflurane post-treatment may enhance autophagy by activating the AMPK/ULK1 signaling pathway and further inhibit the release of inflammatory factors from NLRP3 inflammasomes, thereby ameliorating neurological function and cognitive impairment and exerting a protective effect on the brain in CIRI rats.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Isoflurane , Reperfusion Injury , Stroke , Rats , Animals , Isoflurane/pharmacology , Isoflurane/therapeutic use , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein , AMP-Activated Protein Kinases , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Stroke/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Autophagy , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Autophagy-Related Protein-1 Homolog
9.
Front Immunol ; 14: 1178188, 2023.
Article in English | MEDLINE | ID: mdl-37292216

ABSTRACT

Background: Neuroinflammation is an important factor causing numerous neurodegenerative pathologies. Inflammation can lead to abnormal neuronal structure and function and even death, followed by cognitive dysfunction. There is growing evidence that chlorogenic acid has anti-inflammatory effects and immunomodulatory activity. Purpose: The aim of this study was to elucidate the potential targets and molecular mechanisms of chlorogenic acid in the treatment of neuroinflammation. Methods: We used the lipopolysaccharide-induced neuroinflammation mouse model and the lipopolysaccharide-stimulated BV-2 cells in vitro model. Behavioral scores and experiments were used to assess cognitive dysfunction in mice. HE staining and immunohistochemistry were used to assess neuronal damage in the mouse brain. Immunofluorescence detected microglia polarization in mouse brain. Western blot and flow cytometry detected the polarization of BV-2 cells. The migration of BV-2 cells was detected by wound healing assay and transwell assay. Potential targets for chlorogenic acid to exert protective effects were predicted by network pharmacology. These targets were then validated using molecular docking and experiments. Results: The results of in vivo experiments showed that chlorogenic acid had an obvious ameliorating effect on neuroinflammation-induced cognitive dysfunction. We found that chlorogenic acid was able to inhibit BV-2 cells M1 polarization and promote BV-2 cells M2 polarization in vitro while also inhibiting the abnormal migration of BV-2 cells. Based on the network pharmacology results, we identified the TNF signaling pathway as a key signaling pathway in which chlorogenic acid exerts anti-neuroinflammatory effects. Among them, Akt1, TNF, MMP9, PTGS2, MAPK1, MAPK14, and RELA are the core targets for chlorogenic acid to function. Conclusion: Chlorogenic acid can inhibit microglial polarization toward the M1 phenotype and improve neuroinflammation-induced cognitive dysfunction in mice by modulating these key targets in the TNF signaling pathway.


Subject(s)
Cognitive Dysfunction , Neuroinflammatory Diseases , Cognitive Dysfunction/drug therapy , Male , Animals , Mice , Mice, Inbred C57BL , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases/chemically induced , Chlorogenic Acid/therapeutic use , Brain , Signal Transduction , Tumor Necrosis Factors/metabolism
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 749-757, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37184279

ABSTRACT

The inwardly rectifying potassium channel Kir2.1 is closely associated with many cardiovascular diseases. However, the effect and mechanism of Kir2.1 in diabetic cardiomyopathy remain unclear. In vivo, we use STZ to establish the model, and ventricular structural changes, myocardial inflammatory infiltration, and myocardial fibrosis severity are detected by echocardiography, histological staining, immunohistochemistry, and western blot analysis, respectively. In vitro, a myocardial fibrosis model is established with high glucose. The Kir2.1 current amplitude, intracellular calcium concentration, fibrosis-related proteins, and TGF-ß1/Smad pathway proteins are detected by whole-cell patch clamp, calcium probes, western blot analysis, and immunofluorescence, respectively. The in vivo results show that compared to diabetic cardiomyopathy, zacopride (a Kir2.1 selective agonist) significantly reduces the left ventricular systolic diameter and diastolic diameter, increases the left ventricular ejection fraction and left ventricular short-axis shortening, improves the degree of cell necrosis, and reduces the expression of myocardial interstitial fibrosis protein and collagen fibre deposition area. The in vitro results show that the current amplitude and protein expression of Kir2.1 are both decreased in the high glucose-induced myocardial fibrosis model. Additionally, zacopride significantly upregulates the expression of Kir2.1 and inhibits the expressions of the fibrosis-related proteins α-SMA, collagen I, and collagen III. Activation of Kir2.1 reduces the intracellular calcium concentration and inhibits the protein expressions of TGF-ß1 and p-Smad 2/3. Activation of Kir2.1 can improve myocardial fibrosis induced by diabetic cardiomyopathy, and the possible mechanism may be related to inhibiting Ca 2+ overload and the TGF-ß1/Smad signaling pathway.


Subject(s)
Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/metabolism , Stroke Volume , Transforming Growth Factor beta1/metabolism , Calcium , Ventricular Function, Left , Collagen/metabolism , Collagen/pharmacology , Fibrosis , Signal Transduction , Glucose/pharmacology
11.
Mol Neurobiol ; 60(6): 3175-3189, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36813954

ABSTRACT

Neuropathic pain is a disease that has become one of the major public health problems and a global burden. Nox4-induced oxidative stress can lead to ferroptosis and neuropathic pain. Methyl ferulic acid (MFA) can inhibit the Nox4-induced oxidative stress. This study aimed to estimate whether methyl ferulic acid alleviates neuropathic pain by inhibiting the expression of Nox4 and its induction of ferroptosis. Adult male Sprague-Dawley rats were subjected to spared nerve injury (SNI) model to induce neuropathic pain. After the establishment of the model, methyl ferulic acid was given 14 days by gavage. Nox4 overexpression was induced by microinjection of the AAV-Nox4 vector. All groups measured paw mechanical withdrawal threshold (PMWT), paw thermal withdrawal latency (PTWL), and paw withdrawal cold duration (PWCD). The expression of Nox4, ACSL4, GPX4, and ROS was investigated by Western blot and immunofluorescence staining. The changes in iron content were detected by a tissue iron kit. The morphological changes in mitochondria were observed by transmission electron microscopy. In the SNI group, the paw mechanical withdrawal threshold, the paw withdrawal cold duration decreased, the paw thermal withdrawal latency did not change, the Nox4, ACSL4, ROS, and iron content increased, the GPX4 decreased, and the number of abnormal mitochondria increased. Methyl ferulic acid can increase PMWT and PWCD but does not affect PTWL. Methyl ferulic acid can inhibit Nox4 protein expression. Meanwhile, ferroptosis-related protein ACSL4 expression was decreased, GPX4 expression was increased, ROS, iron content and abnormal mitochondrial number were decreased. By overexpressing Nox4, the PMWT, PWCD, and ferroptosis of rats were more severe than those of the SNI group, but they could be reversed after treatment with methyl ferulic acid. In conclusion, methyl ferulic acid can alleviate neuropathic pain, which is related to Nox4-induced ferroptosis.


Subject(s)
Ferroptosis , Neuralgia , Rats , Male , Animals , Rats, Sprague-Dawley , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Ganglia, Spinal/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Neurons/metabolism
12.
J Ethnopharmacol ; 305: 116103, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36586525

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sympathetic hyperactivation is a significant risk factor in the development of cardiovascular disease. Safranal has shown good myocardial protection in recent studies, but the mechanism of its role in myocardial injury caused by sympathetic hyperactivation remains unclear. AIM OF THE STUDY: The purpose of this study was to investigate whether safranal can effectively reduce isoproterenol (ISO)-induced myocardial injury in rats and H9c2 cells and to reveal its pharmacological action and target in inhibiting myocardial injury caused by sympathetic hyperactivation. MATERIALS AND METHODS: This study was carried out using network pharmacology, molecular docking, and in vitro and in vivo experiments. An in vivo model of myocardial injury was established by subcutaneous injection of ISO, and an in vitro model of H9c2 cell injury was induced by ISO. RESULTS: Safranal ameliorated myocardial injury caused by sympathetic hyperactivation by reducing the level of myocardial apoptosis. According to the results of network pharmacological analysis and molecular docking, the mechanism by which safranal alleviates myocardial injury may be closely related to the TNF signaling pathway, and safranal plays a role by regulating the core targets of the TNF signaling pathway. Safranal significantly inhibited the protein expression of TNF, PTGS2, MMP9 and pRELA. CONCLUSION: Safranal plays a protective role in myocardial injury induced by sympathetic hyperactivation by downregulating the TNF signaling pathway.


Subject(s)
Myocardium , Network Pharmacology , Animals , Rats , Isoproterenol/toxicity , Molecular Docking Simulation , Myocardium/metabolism , Tumor Necrosis Factors
13.
Sheng Li Xue Bao ; 74(5): 751-762, 2022 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-36319098

ABSTRACT

This study aimed to investigate the differential expression profiles of microRNAs (miRNAs) in peripheral blood lymphocytes between patients with essential hypertension and healthy individuals in Xinjiang Kazakh and to provide insight into the mechanism involved in the pathogenesis of hypertension in this ethnic group. From April 2016 to May 2019, 30 Kazakh patients with essential hypertension in the inpatient and outpatient departments of Cardiology, First Affiliated Hospital of Shihezi University were used as the hypertension group; 30 healthy Kazakh patients were used as the control group. The miRNA expression profiles in peripheral blood lymphocytes of 6 Kazakh hypertensive patients and 6 matched healthy individuals were compared, and the differentially expressed miRNAs were analyzed by cluster analysis, GSEA enrichment analysis, target gene prediction, target gene annotation and other bioinformatics analyses. In addition, qRT-PCR was used to verify the differentially expressed miRNAs. The results showed that compared with the control group, 73 differentially expressed miRNAs were identified in the hypertension group, of which 39 miRNAs were up-regulated and 34 miRNAs were down-regulated. A total of 11 miRNAs related to hypertension were screened by GSEA enrichment analysis, including hsa-miR-100-5p, hsa-miR-150-5p, hsa-miR-299-5p, hsa-miR-299-3p, hsa-miR-296-5p, hsa-miR-196b-5p, hsa-miR-503-5p, hsa-miR-628-5p, hsa-miR-874-3p, hsa-miR-543 and hsa-miR-940. qRT-PCR test found that the expression of hsa-miR-100-5p, hsa-miR-299-5p, hsa-miR-299-3p, hsa-miR-196b-5p, hsa-miR-503-5p, hsa-miR-628-5p and hsa-miR-543 was up-regulated, while the expression of hsa-miR-150-5p, hsa-miR-296-5p, hsa-miR-874-3p and hsa-miR-940 was down-regulated in the hypertension group compared with the control group. The expression trend in the gene chip was consistent with the results verified by qRT-PCR. Using online database to predict target genes of 11 miRNAs related to hypertension, we found that a total of 1 647 target genes might be regulated by these 11 miRNAs. GO function enrichment showed that (a) in biological processes, the predicted hypertension related target genes are mainly relevant to nervous system development, cellular localization, regulation of cellular metabolic process, generation of neurons and positive regulation of biological process; (b) In terms of cellular components, they are mainly related to membrane-bounded organelle, cytoplasm, intracellular membrane-bounded organelle, synapse part, neuron part, and nucleoplasm; (c) In terms of molecular function, they are mainly related to protein binding, transcription regulatory region DNA binding, RNA polymerase II regulatory region DNA binding, transcription regulator activity, and ion binding. KEGG enrichment analysis showed that the p53 signaling pathway, adrenergic signaling in cardiomyocytes, cAMP signaling pathway, TGF-ß signaling pathway, endocrine and other factor-regulated calcium reabsorption, mTOR signaling pathway, and aldosterone-regulated sodium reabsorption may be related to the occurrence and development of hypertension. In conclusion, there are significant differences in the expression of miRNAs in peripheral blood lymphocytes between Kazakh patients with essential hypertension and healthy people. The differentially expressed miRNAs may be related to the occurrence and development of essential hypertension in Kazakh. However, the underlying mechanism needs to be further explored and verified.


Subject(s)
Computational Biology , MicroRNAs , Humans , Essential Hypertension , Gene Expression Profiling , MicroRNAs/genetics , Lymphocytes , China , DNA
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(11): 972-978, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36328426

ABSTRACT

Objective To investigate the effect of connexin 43 (Cx43) on M1 polarization of mouse RAW264.7 macrophages induced by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were cultured in vitro and randomly divided into four groups: control group, LPS group, LPS combined with Gap19 group, LPS combined with Gap26 group. The protein levels of Cx43 and M1 polarization marker CD86 and inducible nitric oxide synthase (iNOS) in mouse RAW264.7 macrophages were detected by Western blot analysis. The expression and localization of CD86 in RAW264.7 macrophages were observed by immunofluorescence cytochemistry, and the expression frequency of M1 polarization marker CD86 in mouse RAW264.7 macrophages was detected by flow cytometry. Results Compared with the control group, the protein expression of CD86, iNOS and Cx43, as well as the expression frequency of CD86 in LPS group showed a significant increase. However, compared with LPS group, the protein expression of CD86 and iNOS, and the expression frequency of CD86 decreased significantly in LPS combined with Gap19 group and LPS combined with Gap26 group. As such, LPS could induce M1 polarization of macrophage, while Gap19 and Gap26 can reduce the expression of M1 polarization markers. Conclusion M1 polarization of macrophages can be inhibited by blocking Cx43.


Subject(s)
Connexin 43 , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Macrophages/metabolism
15.
Dis Markers ; 2022: 7812099, 2022.
Article in English | MEDLINE | ID: mdl-36246554

ABSTRACT

Inflammation is a critical mediator of renal ischemia-reperfusion (I/R) injury (IRI), and T lymphocytes exert a key role in the renal IRI-induced inflammation. Connexin 43 (Cx43) is related to the maintenance of T lymphocyte homeostasis. Various preclinical researches have reported that estrogen is a renoprotective agent based on its anti-inflammatory potential. The present research is aimed at studying the role of T lymphocytes activated by Cx43 in 17ß-estradiol-mediated protection against renal IRI. Female rats were classified into six groups: control rats, I/R rats, ovariectomized rats, ovariectomized I/R rats, and ovariectomized rats treated with 17ß-estradiol or gap27. Levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and Paller scoring were dramatically increased in I/R rats, especially in ovariectomized rats. By contrast, these indicators were markedly decreased by administering estradiol or gap27. Immunofluorescence staining revealed that CD4+ T cells infiltrated kidney tissues in the early stage of IRI. In both peripheral blood and renal tissue, the proportion of CD3+CD4+ T cells and ratio of CD4+ to CD8+ were high in I/R rats, especially in ovariectomized rats. The proportion of CD3+CD8+ T cells was low in peripheral blood but high in renal tissues. Administration of estrogen or Gap27 reversed these effects. IL-17 levels in both serum and tissue homogenate were significantly increased in ovariectomized rats subjected to I/R but significantly decreased in estrogen or gap 27 treated rats. The opposite trend was observed for IL-10 levels. Correlation analysis demonstrated that IL-17 was correlated positively with BUN, Scr, and Paller scores, while IL-10 was negatively correlated with these indicators. Western blot showed that Cx43 expression was markedly increased in the peripheral blood T lymphocytes of I/R rats, especially ovariectomized rats. After intervention with estrogen and gap27, Cx43 expression was significantly downregulated. These findings indicate that Cx43 may participate in the regulation of Th17/Treg balance by estrogen against renal IRI.


Subject(s)
Connexin 43 , Reperfusion Injury , Animals , CD8-Positive T-Lymphocytes/metabolism , Connexin 43/analysis , Connexin 43/metabolism , Connexin 43/pharmacology , Creatinine , Estradiol/pharmacology , Estrogens/metabolism , Estrogens/pharmacology , Estrogens/therapeutic use , Female , Inflammation , Interleukin-10/metabolism , Interleukin-17/metabolism , Kidney/metabolism , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , T-Lymphocytes, Regulatory , Th17 Cells
16.
Sleep Med ; 100: 269-279, 2022 12.
Article in English | MEDLINE | ID: mdl-36148759

ABSTRACT

OBJECTIVE: Previous studies indicate that propofol can help with recovery from sleep deprivation and has anti-anxiety effects. However, the underlying neurochemical mechanism remains unclear. This study aimed to investigate the effects of dopamine transporter (DAT) in the ventral tegmental area (VTA) on sleep and anxiety recovery after propofol anesthesia in rats with 24 h total sleep deprivation (TSD). METHODS: Adult male Sprague-Dawley rats were in natural sleep or sleep deprived for 24 h in a sleep deprivation rat system. The rats received propofol anesthesia (75 mg/kg, i.p.) or natural sleep. Dopamine transporter knockdown was performed by microinjection of AAV-DAT-RNAi vector. EEG was measured in each group to evaluate the subsequent sleep. The elevated plus maze test (EPMT) and open field test (OFT) were used to evaluate locomotion and anxiety level in rats. Immunofluorescence was used to verify virus location and transfection efficiency. RESULTS: Compared with NC group, the anxiety level of Propofol group showed no significant difference, but REM sleep decreased. Compared with the TSD group, the anxiety level of the TSD + Propofol group was reduced and the sleep recovery was closer to baseline. Compared with TSD + AAV-NC group, anxiety level and sleep time increased in TSD + AAVi group, REM increased within 24 h after sleep deprivation. The sleep time of TSD + AAVi + Propofol group was between those of TSD + AAV-NC group and TSD + AAVi group. TSD + AAV-NC + Propofol group had the least sleep time and the lowest anxiety level. CONCLUSION: 1. Propofol did not change anxiety level in normal rats, but reduced REM sleep, while it could accelerate sleep recovery and reduce anxiety level in sleep-deprived rats. 2. In sleep deprived rats with DAT knockdown, propofol improved sleep and anxiety levels more slowly, especially producing more REM rebound, suggesting that the improvement of sleep and anxiety levels in sleep-deprived rats with propofol may be related to DAT in VTA region.


Subject(s)
Anesthesia , Propofol , Rats , Male , Animals , Sleep Deprivation , Propofol/pharmacology , Ventral Tegmental Area , Dopamine Plasma Membrane Transport Proteins/pharmacology , Rats, Sprague-Dawley , Sleep
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(9): 807-812, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36082711

ABSTRACT

Objective To investigate whether capsaicin (CAP) can improve the proliferation and migration of cerebral basilar artery smooth muscle cells (BASMCs) in spontaneously hypertensive rats (SHR). Methods Primary BASMCs of SHR and Wistar-Kyoto (WKY) rats were cultured in vitro, randomly divided into control group (WKY group), SHR group and capsaicin treatment group (CAP group). The intervention concentration of CAP was determined by CCK-8 assay; TranswellTM chamber assay and scratch test were used to detect the migration ability of BASMCs; the expression and distribution of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) in BASMCs were detected by immunofluorescence assay, and Western blot analysis was used to detect the protein levels of OPN and PCNA in BASMCs. Results Compared with WKY group, the proliferation and migration ability of BASMC in SHR group were enhanced, while the CAP treatment undermined the proliferation and migration of BASMCs. OPN was expressed in the cytoplasm and nucleus of BASMCs, while PCNA was mainly expressed in the nuclei. Compared with WKY group, the expression and protein level of OPN and PCNA were increased in SHR group, and decreased significantly after CAP treatment. Conclusion Capsaicin can reduce the proliferation and migration of SHR derived BASMCs.


Subject(s)
Basilar Artery , Capsaicin , Animals , Capsaicin/metabolism , Cell Proliferation , Cells, Cultured , Myocytes, Smooth Muscle/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY
18.
Int J Mol Med ; 50(3)2022 09.
Article in English | MEDLINE | ID: mdl-35856410

ABSTRACT

The investigation of effective therapeutic drugs for pulmonary hypertension (PH) is critical. KIR2.1 plays crucial roles in regulating cell proliferation and migration, and vascular remodeling. However, researchers have not yet clearly determined whether KIR2.1 participates in the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and its role in pulmonary vascular remodeling (PVR) also remains elusive. The present study aimed to examine whether KIR2.1 alters PASMC proliferation and migration, and participates in PVR, as well as to explore its mechanisms of action. For the in vivo experiment, a PH model was established by intraperitoneally injecting Sprague­Dawley rats monocrotaline (MCT). Hematoxylin and eosin staining revealed evidence of PVR in the rats with PH. Immunofluorescence staining and western blot analysis revealed increased levels of the KIR2.1, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) proteins in pulmonary blood vessels and lung tissues following exposure to MCT, and the TGF­ß1/SMAD2/3 signaling pathway was activated. For the in vitro experiments, the KIR2.1 inhibitor, ML133, or the TGF­ß1/SMAD2/3 signaling pathway blocker, SB431542, were used to pre­treat human PASMCs (HPASMCs) for 24 h, and the cells were then treated with platelet­derived growth factor (PDGF)­BB for 24 h. Scratch and Transwell assays revealed that PDGF­BB promoted cell proliferation and migration. Immunofluorescence staining and western blot analysis demonstrated that PDGF­BB upregulated OPN and PCNA expression, and activated the TGF­ß1/SMAD2/3 signaling pathway. ML133 reversed the proliferation and migration induced by PDGF­BB, inhibited the expression of OPN and PCNA, inhibited the TGF­ß1/SMAD2/3 signaling pathway, and reduced the proliferation and migration of HPASMCs. SB431542 pre­treatment also reduced cell proliferation and migration; however, it did not affect KIR2.1 expression. On the whole, the results of the present study demonstrate that KIR2.1 regulates the TGF­ß1/SMAD2/3 signaling pathway and the expression of OPN and PCNA proteins, thereby regulating the proliferation and migration of PASMCs and participating in PVR.


Subject(s)
Hypertension, Pulmonary , Pulmonary Artery , Animals , Becaplermin/metabolism , Becaplermin/pharmacology , Cell Proliferation , Humans , Hypertension, Pulmonary/metabolism , Monocrotaline , Myocytes, Smooth Muscle/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , Vascular Remodeling
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(8): 707-713, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-35851084

ABSTRACT

Objective To investigate the effect of emodin on the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMCs) induced by transforming growth factor ß1 (TGF-ß1). Methods HPASMCs were cultured in vitro, and HPASMCs in logarithmic growth phase were divided into control group, TGF-ß1 group, and TGF-ß1 combined with emodin group. The activity of HPASMCs was detected by CCK-8 assay, the migration ability of HPASMCs was detected by TranswellTM chamber assay and scratch assay, and the expressions of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) were detected by immunofluorescence assay. The protein levels of OPN and PCNA and the phosphorylation of SMAD family member 2 (SMAD2) and SMAD family member 2 (SMAD3) in HPASMCs were detected by Western blot. Results Compared with those in the control group, in TGF-ß1 group, the protein expressions of OPN and PCNA, the proliferation and migration of HPASMCs, and the phosphorylation of SMAD2 and SMAD3 were increased. Compared with those in the TGF-ß1 group, in the TGF-ß1 combined with emodin group, the proliferation and migration of HPASMCs, the expressions of OPN and PCNA, and the phosphorylation of SMAD2 and SMAD3 were decreased. Conclusion Emodin inhibits the up-regulation of OPN and PCNA and the proliferation and migration of PASMCs induced by TGF-ß1, which may be related to the blocking of SMAD2/3 signaling pathway.


Subject(s)
Emodin , Transforming Growth Factor beta1 , Cell Proliferation , Emodin/pharmacology , Humans , Myocytes, Smooth Muscle/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Pulmonary Artery/metabolism , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(6): 501-506, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35732607

ABSTRACT

Objective To investigate the role of connexin 43 (Cx43) in the autophagy of rat thoracic aortic vascular smooth muscle cells (VSMCs) induced by oxidized low-density lipoprotein (ox-LDL). Methods The primary VSMCs were identified by immunofluorescence cytochemical staining of α-smooth muscle actin (α-SMA). After ox-LDL treatment, the foam cells were identified by oil red O staining; the expression of microtubule associated protein 1 light chain 3 (LC3) protein in VSMCs treated with 0, 40, 80, 160 µg/mL ox-LDL for 0, 6, 12, 24 hours and the expression of Cx43 protein treated with 80 µg/mL ox-LDL for 24 hours were detected by Western blotting. VSMCs were randomly divided into control group, ox-LDL group, and ox-LDL combined with Cx43 specific antagonist Gap26 group to detect the expressions of LC3 and beclin 1 by Western blotting. Results The positive rate of α-SMA in the isolated cells was more than 95%. The oil red O positive cells in ox-LDL treated cells significantly increased, ox-LDL decreased the ratio of LC3II/LC3I and the expression of beclin 1 protein in a concentration- and time-dependent manner, and the expression of Cx43 protein was significantly increased. After administration of Gap26, the ratio of LC3II/LC3I and the expression of beclin 1 protein were up-regulated. Conclusion Cx43 inhibits autophagy of VSMCs induced by ox-LDL. Cx43 inhibits ox-LDL induced autophagy.


Subject(s)
Connexin 43 , Muscle, Smooth, Vascular , Animals , Autophagy , Beclin-1/metabolism , Cells, Cultured , Connexin 43/genetics , Connexin 43/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Myocytes, Smooth Muscle/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...