Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Water Sci Technol ; 89(9): 2538-2557, 2024 May.
Article in English | MEDLINE | ID: mdl-38747966

ABSTRACT

Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.


Subject(s)
Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Electroplating , Water Purification/methods , Metals, Heavy , Electrocoagulation/methods
2.
Microbiol Spectr ; 11(6): e0181823, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37800944

ABSTRACT

IMPORTANCE: Bees are a valuable model for investigating the relationship between environmental factors, gut microbiota, and organismal health. Beebread, produced from collected pollen, is a natural food source and a primary reservoir of gut microorganisms. Although pollen typically has diverse bacterial species, beebread has low species richness and bacterial abundance. Consequently, considerable attention has been paid to the adaptive strategies employed by honey bees to cope with the microorganisms within their food environment during co-evolution with plants. This study identified the distribution patterns of beebread's physicochemical characteristics, showing how bees use fermentation to enrich specific microbes. These findings help understand the relationship between environmental and food-associated microbes and bee intestinal microbiota. They also bridge gaps in the literature and provide a valuable reference for studying the complex interplay between these factors.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Bees , Animals , Pollen/chemistry , Food , Fermentation
3.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686166

ABSTRACT

This study aimed to assess the impact of oleic acid (OA) supplementation on the biosynthesis of 10-hydroxy-2-decenoic acid (10-HDA) in Apis mellifera ligustica. In experiment 1, varying concentrations of OA (2%, 4%, 6% and 8%) were added to an artificial diet for newly emerged bees reared in cages. Analysis of 10-HDA content and gene expression in the mandibular gland (MG) revealed that the 8% OA treatment had the greatest impact on promoting the synthesis of 10-HDA. Subsequent investigations utilized RNA-seq and lipidomics to characterize the molecular signature in the MG after feeding the 8% OA diet. Phosphatidylcholine (PC) and triacylglycerol (TAG) were found to be the predominant lipids in the MG of worker bees. A total of 154 TAGs were identified, with TAG (18:1-18:1-18:1) exhibiting the highest abundance, which increased by 1.5 times. The major TAG species contained palmitic acid (16:0) and oleic acid (18:1) in their structure, which was associated with fatty acid composition of diet. The increase in abundance of main TAGs may be attributed to the upregulation of glycerol-3-phosphate acyltransferase (Gpat) and glycerol kinase (GK) gene expression at the transcriptional level. The upregulation of differentially expressed genes (DEGs) related to carbohydrate metabolism may contribute to meeting the heightened metabolic demands of the MGs in worker bees. Royal jelly (RJ) samples from bee colonies fed with the 8% OA diet exhibited higher 10-HDA level than RJ collected from bee colonies fed with the artificial diet. These results indicate that 8% OA addition in the diet enhanced biosynthesis of 10-HDA in the mandibular gland, which was accompanied by significant and highly species-selective remodeling of TAGs.


Subject(s)
Fatty Acids, Monounsaturated , Oleic Acid , Bees , Animals , Glycerol-3-Phosphate O-Acyltransferase , Lecithins , Triglycerides
4.
Insects ; 14(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37754710

ABSTRACT

Royal jelly (RJ) is a highly nutritious secretion of the honeybees' hypopharyngeal glands (HPGs). During RJ production, colonies are occasionally subjected to manual interventions, such as sucrose feeding for energy supplementation. This study aimed to assess the impact of sucrose feeding on the composition of RJ. The results indicated that RJ obtained from sucrose-fed colonies exhibited significantly higher levels of fructose, alanine, glycine, tyrosine, valine, and isoleucine compared to the honey-fed group. However, no significant differences were observed in terms of moisture content, crude protein, 10-HDA, glucose, sucrose, minerals, or other amino acids within the RJ samples. Moreover, sucrose feeding did not have a significant effect on midgut sucrase activity, HPGs development, or the expression levels of MRJP1 and MRJP3 in nurse bees. Unsealed stored food samples from sucrose-fed bee colonies demonstrated significantly higher sucrose levels compared to sealed combs and natural honey. Additionally, natural honey exhibited higher moisture and Ca levels, as well as lower levels of Zn and Cu, in comparison to honey collected from bee colonies fed sucrose solutions. Based on these findings, we conclude that sucrose feeding has only a minor impact on the major components of RJ.

5.
Molecules ; 29(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38202713

ABSTRACT

Coal gangue (CG) and coal gasification coarse slag (CGCS) possess both hazardous and resourceful attributes. The present study employed co-roasting followed by H2SO4 leaching to extract Al and Fe from CG and CGCS. The activation behavior and phase transformation mechanism during the co-roasting process were investigated through TG, XRD, FTIR, and XPS characterization analysis as well as Gibbs free energy calculation. The results demonstrate that the leaching rate of total iron (TFe) reached 79.93%, and Al3+ achieved 43.78% under the optimized experimental conditions (co-roasting process: CG/CGCS mass ratio of 8/2, 600 °C, 1 h; H2SO4 leaching process: 30 wt% H2SO4, 90 °C, 5 h, liquid to solid ratio of 5:1 mL/g). Co-roasting induced the conversion of inert kaolinite to active metakaolinite, subsequently leading to the formation of sillimanite (Al2SiO5) and hercynite (FeAl2O4). The iron phases underwent a selective transformation in the following sequence: hematite (Fe2O3) → magnetite (Fe3O4) → wustite (FeO) → ferrosilite (FeSiO3), hercynite (FeAl2O4), and fayalite (Fe2SiO4). Furthermore, we found that acid solution and leached residue both have broad application prospects. This study highlights the significant potential of co-roasting CG and CGCS for high-value utilization.

6.
Food Funct ; 13(19): 9931-9946, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36056641

ABSTRACT

10-Hydroxy-2-decenoic acid (10-HDA) is a principal active ingredients of royal jelly. Several recent studies demonstrated that 10-HDA has potential anti-type 2 diabetes mellitus (T2DM) properties. To evaluate the anti-T2DM effect of 10-HDA and explore its underlying molecular mechanisms, we used high fat diet (HFD) combined with streptozotocin (STZ) injection to establish a diabetes model. Mice were randomly divided into four groups (8 mice per group): control group, 10-HDA group, T2DM group, and T2DM + 10-HDA group. The 10-HDA and T2DM + 10-HDA groups were administered intragastric 10-HDA (100 mg per kg body weight), while the control and T2DM groups were administered a vehicle, daily for 4 weeks. Our analysis indicated that there was no significant difference in body weight between T2DM + 10-HDA and control group mice (P > 0.05). Treatment with 10-HDA reduced fasting blood glucose and increased insulin levels in diabetic mice (P < 0.05), as well as increasing the area of pancreatic islets (P < 0.05), and alleviating vacuolar degeneration in the liver. Further, 10-HDA intervention increased superoxide dismutase, catalase, and glutathione peroxidase activities in diabetic mouse liver, alleviated lipid peroxidation, inhibited liver NF-κB nuclear translocation, decreased IL-6 and TNF-α content, and increased P-PI3K, P-AKT, and P-GSK3ß protein levels (all P < 0.05). Fifteen potential biomarkers were screened by analysis of liver metabolomics data, of which hexadecanamide, stearamide, pentadecanoic acid, and fatty acid esters of hydroxy fatty acids (16:0/18:1) were highly abundant. In conclusion, 10-HDA has clear hypoglycemic effects on diabetic mice, through the PI3K/AKT/GSK3ß signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Biomarkers , Blood Glucose/metabolism , Body Weight , Catalase/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/pharmacology , Fatty Acids, Monounsaturated , Glutathione Peroxidase/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Interleukin-6 , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Streptozocin , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/pharmacology
7.
Insects ; 13(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36135473

ABSTRACT

Queen bees and worker bees both develop from fertilized eggs, whereas queens live longer than workers. The mechanism of this phenomenon is worth exploring. Antioxidant capacity, immune and IIS are the conserved mechanisms of aging. The importance of gut bacteria for health prompted us to connect with bee aging. Therefore, the differences of antioxidant, immune, IIS and gut microflora between queen and worker bees were compared to find potential mechanisms of queens' longevity. The results showed queens had stronger antioxidant capacity and lower immune pathway and IIS activity than workers. The higher expression level of catalase and SOD1/2 in queens resulted in the stronger ROS scavenging ability, which leads to the lower ROS level and the reduced accumulation of oxidative damage products in queens. The lower IMD expression and higher antimicrobial peptides (AMPs) expressions in queens suggested that queens maintain lower immune pathway activity and stronger immune capacity than workers. Gut bacteria composition analysis indicated that queens had supernal Acetobacteraceae (notably Commensalibacter and Bombella), Lactobacillus and Bifidobacterium over workers. In conclusion, antioxidant, immune, IIS, and gut symbiotic bacteria all contribute to the longevity of queens. This study provides more insights into revealing the mechanisms of queens' longevity.

8.
Pestic Biochem Physiol ; 182: 105048, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35249658

ABSTRACT

The cyclin-dependent kinase (CDK) protein family plays an important role in regulating life functions, such as the cell cycle and metabolism. This study reports the first cloning and functional analysis of A. cerana cerana CDK1 (AccCDK1). The distribution profile of AccCDK1 in different developmental periods and different tissues was determined. The experimental results showed that the distribution of AccCDK1 was tissue-specific. AccCDK1 distribution at the transcriptional and translational levels was affected by stress conditions induced by H2O2, UV, HgCl2, CdCl2, extreme temperatures (4 °C, 44 °C) and pesticides (avermectin, lambda-cyhalothrin, haloxyfop-R-methyl, and glyphosate), which resulted in changes in the expression levels. These results suggest that AccCDK1 may have an important part to play in honey bee resistance to stress. The expression of a recombinant AccCDK1 protein in vitro enhanced the antistress capacities of E. coli and yeast, which suggests that AccCDK1 is related to the stress response. When AccCDK1 was silenced, the expression of some antioxidant genes was downregulated, and the enzymatic potencies of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were reduced, which suggests that AccCDK1 takes part in the body's resistance to oxidative stress upon external stimulation by influencing relevant antioxidants. Notably, the survival rate of A. cerana cerana under high-temperature-induced stress decreased after AccCDK1 silencing, which verifies our results. In conclusion, we found that AccCDK1 played an indispensable function in resisting oxidative stress and maintaining normal cellular functions.


Subject(s)
Escherichia coli , Hydrogen Peroxide , Animals , Antioxidants/metabolism , Bees/genetics , Oxidation-Reduction , Oxidative Stress/genetics , Phylogeny
9.
Sci Total Environ ; 822: 153586, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35122853

ABSTRACT

Because of shale gas operations, significant amounts of return water from hydraulic fracturing are stored in tanks and/or ponds on the surface. These waters contain varying concentrations of toxic organic compounds; hence, there is reasonable concern about the occurrence of hypothetical leakages, which would cause adverse environmental effects and pose a risk to human health. In this study, the chronic and acute carcinogenic and non-carcinogenic risks from exposure to these pollutants by inhalation, ingestion and dermal contact have been assessed for an affected area. The first part of this study focused on estimating the concentrations of organic compounds in the water-soil-atmosphere system. These models are of a general nature and can be applied to any site. In this study, they are applied to the Marcellus shale formation. The analyses developed in this work show that the risks - both carcinogenic and non-carcinogenic - regarding the inhalation of volatile organic compounds (VOCs) increase rapidly and exceed the acceptable thresholds by several orders of magnitude in all scenarios, irrespective of the different recharge rates considered. Given that the hypothetical leakage under consideration occurs at a depth of 50 cm, in the buried part of a semi-buried tank-type reservoir, the direct contamination via wastewater of the most superficial parts of the soil is less likely, and soil particles are generally widely dispersed in air before inhaling. Moreover, the sensitivity analysis indicated that the variable contributing the most to the determined risk levels was the pollutant concentration, followed by the exposure time. Therefore, using appropriate technology to reduce pollutant concentrations in storage ponds is the best strategy to minimise the associated risk to human health.


Subject(s)
Hydraulic Fracking , Volatile Organic Compounds , Humans , Natural Gas/analysis , Risk Assessment , Volatile Organic Compounds/analysis , Wastewater/analysis , Water/analysis
10.
Front Microbiol ; 12: 738226, 2021.
Article in English | MEDLINE | ID: mdl-34690980

ABSTRACT

The intestinal microbial community composition of different bee species typically has host specificity, yet little is known about the underlying formation mechanism. There are signs that dietary habits vary in different bee species, suggesting that there may be close relationships between dietary habits and intestinal microorganisms. We explored this hypothesis by comparing the dietary habits and gut microbiota of two common bee species (Apis mellifera L. and Apis cerana cerana) in China. Bee bread and midgut samples from wild and laboratory-reared bees were collected, and the differences in intestinal microbial community composition and growth and development before and after the change in dietary habits of different bee species were compared. We found that the two sympatric species had different dietary specializations and similar metagenomic diversities. The microbiota composition differed between the two species. Moreover, we revealed that changes in native dietary habits destroyed the intestinal microbiota community composition, negatively affecting the growth and development of honeybees.

11.
Dev Biol ; 479: 23-36, 2021 11.
Article in English | MEDLINE | ID: mdl-34332994

ABSTRACT

The mandibular gland is an important exocrine gland of worker bees, which mainly secretes fatty acids and pheromones. Lipids have important roles in energy storage, membrane structure stabilization, and signaling. However, molecular underpinnings of mandibular gland development and lipid remodeling at the different physiological stages of worker bees is still lacking. In this study, we used scanning and transmission electron microscopy to reveal the morphological changes in secretory cells, and liquid chromatography-mass spectrometry and RNA-seq to investigate the lipidome and gene transcripts during development. The morphology of secretory cells was flat in newly emerged workers, becoming vacuolated and turgid when they were activated in nurse bees and foragers. Transport vesicles became denser from newly emerged bees to 21-day worker bees. Concentrations of 10-HDA reached a maximum within 15d workers and changes in genes expression were consistent with 10-HDA content. Non-targeted lipidomics analysis of newly emerged, 6d, and 15d worker bees revealed that PC and TAG were the main lipids in mandibular gland, and lipids dramatically altered across developmental stages. TAG 54:4 was increased most strongly at 6d and 15d worker bees, meanwhile, the abundances of TAG 54:1 and TAG 54:2 were decreased sharply. Further, transcriptomics analysis showed that differentially expressed genes were significantly enriched in key nutrient metabolic pathways, particularly lipid metabolism, in 6d and 15d bees. This multi-omic perspective provides a unique resource and deeper insight into bee mandibular gland development and baseline data for further study of the mandibular gland in worker bees.


Subject(s)
Bees/embryology , Exocrine Glands/embryology , Mandible/embryology , Animals , Bees/metabolism , Behavior, Animal/physiology , Exocrine Glands/metabolism , Gene Expression Profiling/methods , Insect Proteins/genetics , Lipid Metabolism/genetics , Lipidomics/methods , Mandible/metabolism , Metabolic Networks and Pathways , Organogenesis , Proteome/metabolism , Proteomics/methods , Transcriptome/genetics
12.
Cell Stress Chaperones ; 27(2): 121-134, 2021 03.
Article in English | MEDLINE | ID: mdl-35102524

ABSTRACT

Glutathione S-transferases (GSTs) constitute an important multifunctional enzyme family that plays vital roles in cellular detoxification and protecting organisms against oxidative stress caused by reactive oxygen species (ROS). In this study, we isolated a GST-like gene from Apis cerana cerana (AccGSTL) and investigated its antioxidant functions under stress conditions. We found that AccGSTL belongs to the Sigma class of GSTs. Real-time quantitative PCR and western blotting analyses showed that the mRNA and protein levels of AccGSTL were altered in response to oxidative stress caused by various external stimuli. In addition, a heterologous expression analysis showed that AccGSTL overexpression in Escherichia coli (E. coli) cells enhanced resistance to oxidative stress. After AccGSTL silencing with RNA interference (RNAi) technology, the expression of some antioxidant genes was inhibited, and the enzymatic activities of POD, CAT, and SOD were decreased. In conclusion, these data suggest that AccGSTL may be involved in antioxidant defense under adverse conditions in A. cerana cerana.


Subject(s)
Escherichia coli , Glutathione Transferase , Animals , Antioxidants/metabolism , Bees/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Oxidative Stress/physiology , Phylogeny
13.
Front Physiol ; 11: 574856, 2020.
Article in English | MEDLINE | ID: mdl-33240099

ABSTRACT

The polyandrous mating system of honeybees (Apis mellifera L.) has garnered widespread attention. Long-lived honeybee queens only mate early in maturation, and the sperm obtained from the aerial mating is stored in the spermatheca. The maintenance of sperm viability in the spermatheca is an intriguing and complex process. However, the key physiological and biochemical adaptations underlying the long-term storage of sperm remain unclear. Analysis of the metabolite profile could help better understand the biology of the spermatheca and offer insights into the breeding and conservation of honeybees and even pest control strategies. Here, the changes in metabolites in the spermatheca were quantified between virgin queens and new-laying queens (with stored sperm) via liquid chromatography-mass spectrometry. Compared with virgin queens, changes occurred in lipids and lipid-like molecules, including fatty acyls and glycerophospholipids (GPL), prenol lipids, and sterol lipids, during storage of sperm in new-laying honeybee queens. Furthermore, the metabolic pathways that were enriched with the differentially expressed metabolites were identified and included GPL metabolism, biosynthesis of amino acids, and the mTOR signaling pathway. The likely roles of the pathways in the maintenance and protection of sperm are discussed. The study identifies key metabolites and pathways in the complex interplay of substances that contribute to the long-term storage of sperm and ultimately reproductive success of honeybee queens.

14.
Front Genet ; 11: 770, 2020.
Article in English | MEDLINE | ID: mdl-32903639

ABSTRACT

There are many differences in external morphology and internal physiology between the Apis mellifera queen bee and worker bee, some of which are relevant to beekeeping production. These include reproductive traits, body size, royal jelly secreting properties, and visual system development, among others. The identification of candidate genes that control the differentiation of these traits is critical for selective honeybee breeding programs. In this study, we compared the genomic methylation of queen bee and worker bee larvae at 3, 4, and 5 days of age by whole-genome bisulfite sequencing, and found that the basic characteristics of genomic methylation in queen and worker larvae were the same. There were approximately 49 million cytosines in the Apis larvae genome, of which about 90,000 were methylated. Methylated CpG sites accounted for 99% of the methylated cytosines, and methylation mainly occurred in exons. However, methylation levels of queen and worker larvae showed different trends with age: the methylation level of queen larvae varied with age in an inverted parabola, while the corresponding trend for worker larvae with resembled an exponential curve with a platform. The methylation level of queen larvae was higher than that of worker larvae at 3 days of age, lower than that of worker larvae at 4 days of age, and similar to that of worker larvae at 5 days old. The top 10 differentially methylated genes (DMGs) and 13 caste-specific methylated genes were listed, and correlations with caste determination were speculated. We additionally screened 38 DMGs between queen larvae and worker larvae involved in specific organ differentiation as well as reproduction, morphology, and vision differentiation during caste determination. These genes are potential molecular markers for selective breeding of A. mellifera to improve fecundity, royal jelly production, body size, and foraging, and represent candidate genes for investigating specialized functional segregation during the process of caste differentiation.

15.
BMC Microbiol ; 20(1): 61, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32183692

ABSTRACT

BACKGROUND: The health of honeybee colonies is critical for bee products and agricultural production, and colony health is closely associated with the bacteria in the guts of honeybees. Although colony loss in winter is now the primary restriction in beekeeping, the effects of different sugars as winter food on the health of honeybee colonies are not well understood. Therefore, in this study, the influence of different sugar diets on honeybee gut bacteria during overwintering was examined. RESULTS: The bacterial communities in honeybee midguts and hindguts before winter and after bees were fed honey, sucrose, and high-fructose syrup as winter-food were determined by targeting the V3-V4 region of 16S rDNA using the Illumina MiSeq platform. The dominant microbiota in honeybee guts were the phyla Proteobacteria (63.17%), Firmicutes (17.61%; Lactobacillus, 15.91%), Actinobacteria (4.06%; Bifidobacterium, 3.34%), and Bacteroidetes (1.72%). The dominant taxa were conserved and not affected by season, type of overwintering sugar, or spatial position in the gut. However, the relative abundance of the dominant taxa was affected by those factors. In the midgut, microbial diversity of the sucrose group was higher than that of the honey and high-fructose syrup groups, but in the hindgut, microbial diversity of the honey and high-fructose groups was higher than that in the sucrose group. Sucrose increased the relative abundance of Actinobacteria (Bifidobacteriales Bifidobacteriaceae) and Alphaproteobacteria (Rhizobiales and Mitochondria) of honeybee midgut, and honey enriched the Bacteroidetes and Gammaproteobacteria (Pasteurellales) in honeybee hindgut. High-fructose syrup increased the relative abundance of Betaproteobacteria (Neisseriales: Neisseriaceae) of the midgut. CONCLUSION: The type of sugar used as winter food affected the relative abundance of the dominant bacterial communities in honeybee guts, not the taxa, which could affect the health and safety of honeybee colonies during overwintering. The presence of the supernal Alphaproteobacteria, Bifidobacteriales, and Lactobacillaceae in the gut of honeybees fed sucrose and cheaper than honey both indicate that sucrose is very suitable as the overwintering food for honeybees.


Subject(s)
Bacteria/classification , Bees/microbiology , Dietary Sugars/adverse effects , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Bacteria/drug effects , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Gastrointestinal Microbiome/drug effects , High Fructose Corn Syrup/adverse effects , High-Throughput Nucleotide Sequencing , Phylogeny , Seasons , Sucrose/adverse effects
16.
Front Genet ; 10: 1000, 2019.
Article in English | MEDLINE | ID: mdl-31803222

ABSTRACT

Cytochrome P450 monooxygenases (P450s) are widely distributed multifunctional enzymes that play crucial roles in insecticide detoxification or activation. In this study, to ascertain the molecular mechanisms of P450s in the detoxification of Chinese honeybees, Apis cerana cerana Fabricius (A. c. cerana), we isolated and characterized four new P450 genes (Acc301A1, Acc303A1, Acc306A1, and Acc315A1). The open reading frames of the four genes are 1263 to 1608 bp in length and encode four predicted polypeptides of 499 to 517 amino acids in length. Real-time quantitative PCR (RT-qPCR) results showed that expression of all four genes was observed in all developmental stages. In addition, Western blot assays further indicated the RT-qPCR results that showed that the four genes were induced by pesticide (thiamethoxam, deltamethrin, dichlorovos, and paraquat) treatments. Furthermore, we also used double-stranded RNA-mediated RNA interference to investigate the functions of Acc301A1, Acc303A1,and Acc306A1 in the antioxidant defense of honeybees. RNA interference targeting Acc301A1, Acc303A1, and Acc306A1 significantly increased the mortality rate of A. c. cerana upon pesticide treatment. These results provide important evidence about the role of the four P450 genes involved in detoxification.

17.
Sci Total Environ ; 696: 133911, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31442724

ABSTRACT

The return water from hydraulic fracturing operations is characterised by high concentrations of salts and toxic organic compounds. This water is stored on the surface in storage tanks and/or ponds. Wastewater spills caused by inappropriate storage can lead to the contamination of various environmental compartments, thus posing a risk to human health. Such risk can be determined by estimating the concentrations of the substances in the storage system and the behaviour of the same in function of the characteristics of the environment in which they are released. To this end, here we addressed the evolution of the concentrations of pollutants in a tank used to store wastewater from hydraulic fracturing operations. To do this, we estimated both the volume of flowback and the concentrations of the pollutants found in these waters. We then examined the dynamic behaviour of spill-derived compounds in the various environmental compartments in function of the conditions of the medium (humid, semi-arid, and arid). This approach allowed us to rank the hazard posed by the chemical compounds in question, as well as to determine those parameters associated with both the compounds and external natural conditions that contribute to environmental risk. Our results shed greater light on the mechanism by which external environmental variables (especially recharge rate) influence the migration of organic compounds in the vadose zone, and contribute to the prediction of their concentrations. Also, by estimating the time that chemicals remain in contaminated areas, we identify the phases of contamination that pose the greatest risk to human health. In summary, the approach used herein allows the ranking of compounds on the basis of risk to human health and can thus facilitate the design of pollutant management strategies. Of note, our ranked list highlights the relevance of benzene.

18.
Front Physiol ; 9: 1608, 2018.
Article in English | MEDLINE | ID: mdl-30498454

ABSTRACT

Cytochrome P450s play critical roles in maintaining redox homeostasis and protecting organisms from the accumulation of toxic reactive oxygen species (ROS). The biochemical functions of the P450 family have essentially been associated with the metabolism of xenobiotics. Here, we sequenced and characterized three P450 genes, AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5, from Apis cerana cerana Fabricius; these genes play a critical role in maintaining biodiversity. Quantitative PCR (qPCR) analysis indicated that the three genes were all predominantly expressed in the epidermis (EP), followed by the brain (BR) and midgut (MG). In addition, the highest expression levels were detected in the dark-eyed pupae and adult stages. The three genes were induced by temperature (4°C and 44°C), heavy metals (CdCl2 and HgCl2), pesticides (DDV, deltamethrin, and paraquat) and UV treatments. Furthermore, Western blot analysis indicated that the protein expression levels could be induced by some abiotic stressors, a result that complements the qPCR results. We analyzed the silencing of these three genes and found that silencing these genes enhanced the enzymatic activities of peroxidase (POD) and catalase (CAT). Additionally, we investigated the expression of other antioxidant genes and found that some were upregulated, while others were downregulated, suggesting that the upregulated genes may be involved in compensating for the silencing of AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5. Our findings suggest that AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5 may play very significant roles in the antioxidant defense against damage caused by ROS.

19.
Sci Total Environ ; 625: 1164-1174, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29996413

ABSTRACT

Horizontal drilling and hydraulic fracturing are technologies designed to increase natural gas flow and to improve productivity in low permeability formations. During this drilling operation, tons of flowback and produced water, which contain several organic compounds, return to the surface with a potential risk of influencing the surrounding environment and human health. In order to conduct predictive risk assessments a mathematical model is needed to evaluate organic compound behaviour along the water transportation process as well as concentration changes over time throughout the operational life cycle. A comprehensive model, which fits the experimental data, combining an Organic Matter Transport Dynamic Model with a Two-Compartment First-order Rate Constant (TFRC) Model has been established to quantify the organic compounds concentrations. This algorithm model incorporates two transportation rates, fast and slow. The results show that the higher the value of the organic carbon partition coefficient (koc) in chemicals, the later the maximum concentration in water will be reached. The maximum concentration percentage would reach up to 90% of the available concentration of each compound in shale formation (whose origin may be associated to drilling fluid, connate water and/or rock matrix) over a sufficiently long period of time. This model could serve as a contribution to enhance monitoring strategy, increase benefits out of optimizing health risk assessment for local residents and provide initial baseline data to further operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...