Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
IET Syst Biol ; 17(6): 352-365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907428

ABSTRACT

With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including POSTN, MMP1, COL3A1, COL1A2, CXCL12, TIMP3, VCAM1, and COL1A1 were selected from the PPI network by Cytoscape software. Then, five hub genes (MMP1, POSTN, COL3A1, COL1A2, and COL1A1) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.


Subject(s)
Gastroesophageal Reflux , Idiopathic Pulmonary Fibrosis , MicroRNAs , Humans , Gene Expression Profiling/methods , Matrix Metalloproteinase 1/genetics , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Idiopathic Pulmonary Fibrosis/genetics , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/genetics , Computational Biology/methods
2.
Korean J Pain ; 36(3): 316-327, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37183652

ABSTRACT

Background: Spinal N-methyl-D-aspartate (NMDA) receptor activation is attributed to remifentanil-induced hyperalgesia (RIH). However, the specific mechanism and subsequent treatment is still unknown. Previous studies have shown that the dynamin-related protein 1 (DRP1)-mitochondria-reactive oxygen species (ROS) pathway plays an important role in neuropathic pain. This study examined whether antisense oligodeoxynucleotides against DRP1 (AS-DRP1) could reverse RIH. Methods: The authors first measured changes in paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) at 24 hours before remifentanil infusion and 4, 8, 24, and 48 hours after infusion. The expression levels of DRP1 and NR2B were measured after behavioral testing using Western blotting. In addition, DRP1 expression was knocked down by intrathecal administration of AS-DRP1 to investigate the effects of DRP1 on RIH. The behavioral testing, the expression levels of spinal DRP1 and NR2B, and dorsal mitochondrial superoxide were measured. Changes in mitochondrial morphology were assessed using electron microscopy. Results: After remifentanil exposure, upregulation of spinal DRP1 and NR2B was observed along with a reduction in PWMT and PWTL. In addition, AS-DRP1 improved RIH-induced PWTL and PWMT (P < 0.001 and P < 0.001) and reduced remifentanil-mediated enhancement of spinal DRP1 and NR2B expression (P = 0.020 and P = 0.022). More importantly, AS-DRP1 reversed RIH-induced mitochondrial fission (P = 0.020) and mitochondrial superoxide upregulation (P = 0.031). Conclusions: These results indicate that AS-DRP1 could modulate NMDA receptor expression to prevent RIH through the DRP1-mitochondria-ROS pathway.

3.
J Phys Condens Matter ; 35(10)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36538827

ABSTRACT

Composed of the three spiral magnetic vectors, the structure of skyrmion lattice (SkL) can be destructed by spin excitations in possibly two ways: one is to make decoherence of all the helices through the phase change of a certain spiral magnetic vector, and the other is to inhibit one or two spiral components while enhancing the others so that it becomes a magnetic structure of single or double magnetic vectors. Here, we present a micromagnetic study on the spin excitations of a two-dimensional SkL under the in-plane microwave magnetic field. By calculating the parameters describing the in-plane spin excitations mode, we find that the spin configuration tends to be an enhanced single-vector spiral magnetic structure due to the excitation modes under some specific frequencies so that the SkL will collapse to the topologically trivial state. Our results help to form a deeper understanding of the spin excitation in SkL under an ac magnetic field.

4.
Front Mol Biosci ; 9: 888194, 2022.
Article in English | MEDLINE | ID: mdl-35693550

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrinopathies disorder in women of reproductive age and non-alcoholic fatty liver (NAFLD) is one of the most common liver diseases worldwide. Previous research has indicated potential associations between PCOS and NAFLD, but the underlying pathophysiology is still not clear. The present study aims to identify the differentially expressed genes (DEGs) between PCOS and NAFLD through the bioinformatics method, and explore the associated molecular mechanisms. Methods: The microarray datasets GSE34526 and GSE63067 were downloaded from Gene Expression Omnibus (GEO) database and analyzed to obtain the DEGs between PCOS and NAFLD with the GEO2R online tool. Next, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the DEGs were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, NetworkAnalyst was used to construct the network between the targeted microRNAs (miRNAs) and the hub genes. Results: A total of 52 genes were identified as DEGs in the above two datasets. GO and KEGG enrichment analysis indicated that DEGs are mostly enriched in immunity and inflammation related pathways. In addition, nine hub genes, including TREM1, S100A9, FPR1, NCF2, FCER1G, CCR1, S100A12, MMP9, and IL1RN were selected from the PPI network by using the cytoHubba and MCODE plug-in. Then, four miRNAs, including miR-20a-5p, miR-129-2-3p, miR-124-3p, and miR-101-3p, were predicted as possibly the key miRNAs through the miRNA-gene network construction. Conclusion: In summary, we firstly constructed a miRNA-gene regulatory network depicting interactions between the predicted miRNA and the hub genes in NAFLD and PCOS, which provides novel insights into the identification of potential biomarkers and valuable therapeutic leads for PCOS and NAFLD.

5.
Environ Pollut ; 265(Pt A): 114842, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32497820

ABSTRACT

Testicular dysgenesis syndrome might be due to the fetal testis defects caused by endocrine disruptors. Here, we report the combined effects of in utero exposure to cadmium (CdCl2, Cd) and di-n-butyl phthalate (DBP) on fetal testis development in rats. Pregnant Sprague-Dawley rats were randomly divided into four groups: control, Cd, DBP (250 mg/kg/day), and Cd + DBP. Cd (0.25 mg/kg/once) was intraperitoneally injected to the dam on gestational day 12 and DBP (250 mg/kg) was daily gavaged to the dam on gestational day 12 for 10 days. Cd, DBP, and Cd + DBP lowered serum testosterone levels in male fetuses. Cd and DBP did not alter fetal Leydig cell (FLC) number, but the combined exposure led to decreased FLC number. Cd did not affect FLC aggregation while DBP caused FLC aggregation and the combined exposure worsened FLC aggregation. Cd lowered FLC mRNA (Lhcgr, Star, Cyp11a1, and Insl3) levels and DBP lowered Lhcgr, Star, Insl3, and Nr5a1 levels. DBP up-regulated Scarb1 expression without affecting Cyp11a1 while the combined exposure antagonized DBP. These two chemicals and its combination did not affect Sertoli cell number and gene (Amh, Fshr, and Sox9) expression at current doses. In conclusion, the combined exposure of Cd and DBP exerts synergically antiandrogenic effects via targeting FLC development.


Subject(s)
Dibutyl Phthalate , Testis , Animals , Cadmium , Female , Fetus , Leydig Cells , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Testosterone
6.
Cell Death Dis ; 10(3): 220, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30833541

ABSTRACT

Leydig cells (LCs) play crucial roles in producing testosterone, which is critical in the regulation of male reproduction and development. Low levels of testosterone will lead to male hypogonadism. LC transplantation is a promising alternative therapy for male hypogonadism. However, the source of LCs limits this strategy for clinical applications. Thus far, others have reported that LCs can be derived from stem cells by gene transfection, but the safe and effective induction method has not yet been reported. Here, we report that Leydig-like cells can be derived from human induced pluripotent stem cells (iPSCs) using a novel differentiation protocol based on molecular compounds. The iPSCs-derived Leydig-like cells (iPSC-LCs) acquired testosterone synthesis capabilities, had the similar gene expression profiles with LCs, and positively expressed Leydig cell lineage-specific protein markers LHCGR, STAR, SCARB1, SF-1, CYP11A1, HSD3B1, and HSD17B3 as well as negatively expressed iPSC-specific markers NANOG, OCT4, and SOX2. When iPSC-LCs labeled with lipophilic red dye (PKH26) were transplanted into rat testes that were selectively eliminated endogenous LCs using EDS (75 mg/kg), the transplanted iPSC-LCs could survive and function in the interstitium of testes, and accelerate the recovery of serum testosterone levels and testis weights. Collectively, these findings demonstrated that the iPSCs were able to be differentiated into Leydig-like cells by few defined molecular compounds, which may lay the safer groundwork for further clinical application of iPSC-LCs for hypogonadism.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Leydig Cells/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Gene Expression Profiling , Humans , Leydig Cells/transplantation , Male , Rats , Testis/cytology , Testosterone/blood
7.
Article in English | MEDLINE | ID: mdl-30906280

ABSTRACT

Fibroblast growth factor 1 (FGF1) is reported to be expressed in the testis. How FGF1 affects stem Leydig cell development remains unclear. Here, we report the effects of FGF1 on rat stem Leydig cell development in an ethane dimethane sulfonate (EDS)-treated model. FGF1 (100 ng/testis) significantly increased serum testosterone level, increased PCNA-positive Leydig cell percentage and Leydig cell number, but down-regulated the expression of Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd11b1 in Leydig cells per se, after its daily intratesticular injection from post-EDS day 14 for 14 days. Primary culture of the seminiferous tubules showed that FGF1 stimulated EdU incorporation to stem Leydig cells but blocked the differentiation into the Leydig cell lineage, possibly via FGFR1-mediated mechanism. In conclusion, FGF1 promotes stem Leydig cell proliferation but blocks its differentiation.

8.
Chem Res Toxicol ; 32(1): 146-155, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30489073

ABSTRACT

Perfluorododecanoic acid (PFDoA) has been used as a surfactant and may have reproductive toxicity. However, whether PFDoA influences Leydig cell development during prepuberty remains unknown. In the present study, 21-day-old male Sprague-Dawley rats were gavaged 0, 5, or 10 mg/kg PFDoA from postnatal day 21 to 35. PFDoA decreased the serum concentrations of testosterone, luteinizing hormone, and follicle-stimulating hormone at doses of 5 and 10 mg/kg without influencing Leydig cell number and proliferation. However, PFDoA down-regulated the expression of Leydig cell genes ( Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, and Hsd11b1) or their proteins. PFDoA dose-dependently reduced SIRT1 and PGC-1α levels. PFDoA did not affect AMPK and AKT2 levels but decreased their phosphorylation. We also treated primary progenitor Leydig cells purified from prepubertal rat testes with PFDoA for 24 h. It in vitro lowered viability and decreased mitochondrial membrane potential of progenitor Leydig cells, but it stimulated the generation of the intracellular reactive oxygen species and induced Leydig cell apoptosis at 10 µM. In conclusion, PFDoA blocks rat Leydig cell development during the prepubertal period possibly via targeting AMPK/SIRT1/PGC-1α and AKT2 signaling pathways.


Subject(s)
Lauric Acids/pharmacology , Lauric Acids/toxicity , Leydig Cells/drug effects , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Fluorocarbons , Leydig Cells/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
9.
Toxicology ; 411: 60-70, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30391266

ABSTRACT

Dicyclohexyl phthalate (DCHP) is a phthalate plasticizer with a ring structure in the alcohol moiety. The objective to the current study was to determine the effects of DCHP on Leydig cell regeneration in the adult rat-testis. Adult male Sprague Dawley rats received intraperitoneally an injection of ethane dimethane sulfone (EDS) to eliminate all Leydig cells in the testis and then were divided into 4 groups of 0 (control), 10, 100, and 1000 mg/kg/day DCHP. Rats were gavaged either vehicle (corn oil, control) or DCHP from post-EDS day 7 to day 21 and 28. On post-EDS day 21 and day 28, rats were euthanized and serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) levels were measured, and Leydig cell number, cell size, gene, and protein expression were evaluated. During the course of exposure, DCHP did not cause the general toxicity to rats. On post-EDS day 21, DCHP significantly increased serum testosterone level at 10 and 100 mg/kg and increased Leydig cell number at 10 mg/kg via stimulating their mitosis. On post-EDS day 28, DCHP lowered serum testosterone levels and Leydig cell number at 1000 mg/kg. DCHP dose-dependently down-regulated the expression of many Leydig cell genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, and Insl3) and their proteins, especially at 1000 mg/kg. DCHP also lowered the pAKT1/AKT1 and pERK1/2/ERK1/2 ratios. In conclusion, DCHP at low doses (10 and 100 mg/kg) increased Leydig cell number during the initial regeneration and inhibited Leydig cell regeneration during the course of its exposure.


Subject(s)
Leydig Cells/drug effects , Phthalic Acids/toxicity , Testis/cytology , Androgens/analysis , Animals , Cell Count , Cell Proliferation/drug effects , Cell Size , Gene Expression Regulation/drug effects , Leydig Cells/metabolism , Male , Phosphorylation/drug effects , Protein Kinases/metabolism , Rats , Rats, Sprague-Dawley , Regeneration/drug effects , Testis/drug effects , Testis/metabolism , Testosterone/blood
10.
Chem Res Toxicol ; 31(12): 1315-1322, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30422632

ABSTRACT

Ziram is a dimethyldithiocarbamate fungicide, which may influence the male reproductive system as a potential endocrine disruptor. We interrogated the disruption of ziram on rat progenitor Leydig cell development. Prepubertal male Sprague-Dawley rats were orally treated with 0, 2, 4, or 8 mg/kg ziram for 2 weeks. We investigated the effects of ziram on serum testosterone levels, Leydig cell number, and Leydig and Sertoli cell gene and protein expression, SIRT1/PGC-1α levels, and phosphorylation of AKT1, ERK1/2, and AMPK in vivo. We also interrogated the effects of ziram on reactive oxidative species (ROS) level, apoptosis rate, and mitochondrial membrane potential of progenitor Leydig cells in vitro. Ziram decreased serum testosterone and follicle-stimulating hormone levels, the down-regulated Leydig cell-specific gene ( Lhcgr, Scarb1, Star, Cyp17a1, and Hsd17b3), and their protein expression. However, ziram stimulated anti-Müllerian hormone production. Ziram lowered SIRT1/PGC-1α and phosphorylated protein levels of AKT1. Ziram induced ROS and apoptosis and lowered the mitochondrial membrane potential of progenitor Leydig cells in vitro. In conclusion, ziram disrupts Leydig cell development during the prepubertal period potentially through the SIRT1/PGC-1α and phosphorylated AKT1 signaling.


Subject(s)
Fungicides, Industrial/toxicity , Puberty, Delayed/etiology , Signal Transduction/drug effects , Testis/drug effects , Ziram/toxicity , Animals , Apoptosis/drug effects , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Down-Regulation/drug effects , Fungicides, Industrial/chemistry , Leydig Cells/cytology , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Puberty, Delayed/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Testis/metabolism , Testosterone/blood , Ziram/chemistry
11.
Front Pharmacol ; 9: 833, 2018.
Article in English | MEDLINE | ID: mdl-30147652

ABSTRACT

Triphenyltin chloride (TPT) is present in a wide range of human foods. TPT could disrupt testis function as a potential endocrine disruptor of Leydig cells. However, the effect of TPT on pubertal Leydig cell development is still unclear. The objective of the current study was to explore whether exposure to TPT affected Leydig cell developmental process and to clarify the underlying mechanisms. Male Sprague-Dawley rats at 35 days of age were randomly divided into four groups and received normal corn oil (control), 0.5, 1, or 2 mg/kg/day TPT for 18 days. Immature Leydig cells isolated from 35-day-old rat testes were treated with TPT (10 and 100 nM) for 24 h in vitro. In vivo exposure to ≥0.5 mg/kg TPT lowered serum testosterone levels and lowered Star mRNA. TPT at 2 mg/kg also lowered Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3 as well as pAKT1/AKT1, pAKT2/AKT2, and pERK1/2/ERK1/2 ratios. In vitro exposure to TPT (100 nM) increased ROS production and induced cell apoptosis rate in rat immature Leydig cells. In conclusion, TPT exposure disrupts Leydig cell development possibly via interfering with the phosphorylation of AKT1, AKT2, and ERK1/2 kinases.

12.
Chemosphere ; 203: 393-401, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29627606

ABSTRACT

Ziram is an endocrine disruptor and may cause birth abnormality of the male reproductive system. However, the effects of ziram on fetal Leydig cell (FLC) development are still unknown. The objective of the present study was to determine the endocrine-disrupting effect of ziram on rat FLC development after gestational exposure. Pregnant Sprague Dawley dams were randomly divided into 5 groups and were gavaged with 0 (corn oil, the control), 1, 2, 4, or 8 mg/kg ziram from gestational day 12 (GD12) to GD21. FLC development was evaluated by measuring serum testosterone, FLC number and distribution, and the expression levels of Leydig and Sertoli cell genes. Ziram significantly increased serum testosterone level at 1 mg/kg (1.350 ±â€¯0.099 ng/ml vs. 0.989 ±â€¯0.106 ng/ml in the control), while it remarkably lowered it at 8 mg/kg (0.598 ±â€¯0.086 ng/ml). Quantitative immunohistochemical staining showed that ziram increased FLC number via stimulating cell proliferation at 1 mg/kg and lowered it via inhibiting its proliferation at 8 mg/kg without affecting Sertoli cell number. Further study demonstrated that the expression of Nr5a1, Lhcgr, Scarb1, Star, Cyp11a1, and Cyp17a1 genes and proteins in the testis was upregulated at 1 mg/kg and the expression of Leydig (Nr5a1, Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, and Insl3) and Sertoli cell (Fshr, Hsd17b3, Dhh, Amh, and Sox9) genes and proteins was downregulated by ziram at 8 mg/kg. In conclusion, ziram had biphasic effects on FLC development with low dose to increase FLC number and function and high dose to decrease them.


Subject(s)
Fetal Development/drug effects , Fungicides, Industrial/toxicity , Leydig Cells/drug effects , Ziram/toxicity , Animals , Down-Regulation , Endocrine Disruptors/metabolism , Female , Leydig Cells/metabolism , Male , Pregnancy , Random Allocation , Rats , Rats, Sprague-Dawley , Sertoli Cells/drug effects , Testis/drug effects , Testosterone/blood
13.
Toxicol Sci ; 164(1): 60-71, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29669061

ABSTRACT

Zearalenone (ZEA), a fungal mycotoxin, is present in a wide range of human foods. By virtual screening, we have identified that ZEA is a potential endocrine disruptor of Leydig cells. The effect of ZEA on Leydig cell development is still unclear. The objective of the present study was to explore whether ZEA affected Leydig cell developmental process and to clarify the underlying mechanism. Adult male Sprague-Dawley rats (60 days old) were randomly divided into three groups and these rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all Leydig cells. Seven days after EDS treatment, rats intratesticularly received normal saline (control) or 150 or 300 ng/testis/day ZEA for 21 days. Immature Leydig cells isolated from 35-day-old rats were treated with ZEA (0.05-50 µM) for 24 h in vitro. In vivo ZEA exposure lowered serum testosterone levels, reduced Leydig cell number, and decreased Leydig cell-specific gene or protein expression levels possibly via downregulating the steroidogenic factor 1 (Nr5a1) expression. ZEA in vitro inhibited androgen production and steroidogenic enzyme activities in immature Leydig cells by downregulating expression levels of cholesterol side cleavage enzyme (Cyp11a1), 3ß-hydroxysteroid dehydrogenase 1 (Hsd3b1), and steroid 5α-reductase 1 (Srd5a1) at a concentration as low as 50 nM. In conclusion, ZEA exposure disrupts Leydig cell development and steroidogenesis possibly via downregulating Nr5a1.


Subject(s)
Endocrine Disruptors/toxicity , Leydig Cells/drug effects , Stem Cells/drug effects , Zearalenone/toxicity , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Animals , Cell Count , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/genetics , Down-Regulation , Leydig Cells/metabolism , Leydig Cells/pathology , Male , Rats, Sprague-Dawley , Regeneration , Stem Cells/metabolism , Stem Cells/pathology , Steroidogenic Factor 1/genetics , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...