Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.042
Filter
1.
Epilepsy Behav Rep ; 27: 100676, 2024.
Article in English | MEDLINE | ID: mdl-38826153

ABSTRACT

Although several previous studies have used resting-state functional magnetic resonance imaging and diffusion tensor imaging to report topological changes in the brain in epilepsy, it remains unclear whether the individual structural covariance network (SCN) changes in epilepsy, especially in pediatric epilepsy with visual cortex resection but with normal functions. Herein, individual SCNs were mapped and analyzed for seven pediatric patients with epilepsy after surgery and 15 age-matched healthy controls. A whole-brain individual SCN was constructed based on an automated anatomical labeling template, and global and nodal network metrics were calculated for statistical analyses. Small-world properties were exhibited by pediatric patients after brain surgery and by healthy controls. After brain surgery, pediatric patients with epilepsy exhibited a higher shortest path length, lower global efficiency, and higher nodal efficiency in the cuneus than those in healthy controls. These results revealed that pediatric epilepsy after brain surgery, even with normal functions, showed altered topological organization of the individual SCNs, which revealed residual network topological abnormalities and may provide initial evidence for the underlying functional impairments in the brain of pediatric patients with epilepsy after surgery that can occur in the future.

2.
World Neurosurg ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823446

ABSTRACT

OBJECTIVES: Studies assessing aneurysm rupture "risk" based on comparative retrospective analyses of medications taken on presentation may be subject to presentation bias. Are patients with ruptured aneurysms simply less likely to be taking medications than those with unruptured aneurysms? METHODS: A retrospective chart review was conducted among patients with treated aneurysms from June 2016 to July 2023. A step-wise comparison of demographics, clinical characteristics (rupture status), and medications taken upon presentation was performed between ruptured and unruptured cases. RESULTS: 1311 patients with intracranial aneurysms were included. The majority of patients presenting with ruptured aneurysms took no medications (68%), in contrast to 22% with unruptured aneurysms (p < 0.001). The majority of patients with unruptured aneurysms took 2-5 medications (51%), in contrast to 15% of patients with ruptured aneurysms taking 2-5 medications (p < 0.001). Twelve percent of patients with unruptured aneurysms took more than 5 medications while only 1% with ruptured aneurysms did (p < 0.001). Thirty-five different medications were associated with unruptured presentation, including all evaluated antiplatelet agents, anti-hypertensives, antacids, pulmonary inhalers, and psychiatric medications (p < 0.05); no medications were associated with rupture on presentation. CONCLUSION: One cannot derive conclusions about medications and "risk" of rupture based on analyses at time of presentation. This study identifies 35 different medications that were statistically-significantly associated with unruptured presentation; it is doubtful each are "protective" against aneurysm rupture.

3.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826335

ABSTRACT

Fusarium oxysporum is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of F. oxysporum to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato [ Solanum lycopersicum ]). In vivo infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal ulceration and perforation in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato. In vitro assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant of osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) and protein-encoding genes with distinct transposon profiles and functions, respectively, between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotype with phenotype and for developing targeted antifungals for agricultural and clinical uses. Importance: Fusarium oxysporum is a cross-kingdom fungal pathogen that infects both plants and animals. In addition to causing many devastating wilt diseases, this group of organisms was recently recognized by the World Health Organization as a high-priority threat to human health. Climate change has increased the risk of Fusarium infections, as Fusarium strains are highly adaptable to changing environments. Deciphering fungal adaptation mechanisms is crucial to developing appropriate control strategies. We performed a comparative analysis of Fusarium strains using an animal (mouse) and plant (tomato) host and in vitro conditions that mimic abiotic stress. We also performed comparative genomics analyses to highlight the genetic differences between human and plant pathogens and correlate their phenotypic and genotypic variations. We uncovered important functional hubs shared by plant and human pathogens, such as chromatin modification, transcriptional regulation, and signal transduction, which could be used to identify novel antifungal targets.

4.
BMC Vet Res ; 20(1): 243, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835040

ABSTRACT

BACKGROUND: The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS: The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS: Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.


Subject(s)
Amino Acid Sequence , Animals , Structure-Activity Relationship , Fish Diseases/microbiology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Disulfides/chemistry , Phylogeny , Aeromonas hydrophila/drug effects , Base Sequence
5.
Dalton Trans ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836742

ABSTRACT

Electrocatalytic reduction of biomass-derived furan compounds provides a green and sustainable approach to produce value-added fuels and chemicals. Despite the achievements in unimolecular transformation, C-C coupling which holds great promise to yield precursors for high-density fuels has not received extensive attention. Herein, we report a Cu2O-derived nanowire array material with switchable selectivity to electrocatalytic reduction of furfural depending on the electrolyte pH. Besides a high selectivity of 98.4% to furfuryl alcohol via hydrogenation at pH 9.5, the Cu2O-derived array structure also exhibits a high selectivity of 83.5% to hydrofuroin via C-C coupling at pH 14. Upon control experiments and detailed characterization of the electrodes, the array architecture is proposed to decrease the diffusion of ketyl radicals which are the key intermediates for C-C coupling. The confined diffusion results in a high local concentration of the radicals in the array and facilitates their collision for enhancing the formation of hydrofuroin.

6.
Mil Med Res ; 11(1): 35, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835066

ABSTRACT

Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/epidemiology , Neuroendocrine Tumors/diagnosis , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/therapy , Stomach Neoplasms/diagnosis , Intestinal Neoplasms/therapy , Intestinal Neoplasms/epidemiology , Intestinal Neoplasms/diagnosis
9.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731422

ABSTRACT

In this study, S-doped graphitic carbon nitride (S-C3N4) was prepared using the high-temperature polymerization method, and then S-C3N4/AgCdS heterojunction photocatalyst was obtained using the chemical deposition method through loading Ag-doped CdS nanoparticles (AgCdS NPs) on the surface of S-C3N4. Experimental results show that the AgCdS NPs were evenly dispersed on the surface of S-C3N4, indicating that a good heterojunction structure was formed. Compared to S-C3N4, CdS, AgCdS and S-C3N4/CdS, the photocatalytic performance of S-C3N4/AgCdS has been significantly improved, and exhibits excellent photocatalytic degradation performance of Rhodamine B and methyl orange. The doping of Ag in collaboration with the construction of a Z-scheme heterojunction system promoted the effective separation and transport of the photogenerated carriers in S-C3N4/AgCdS, significantly accelerated its photocatalytic reaction process, and thus improved its photocatalytic performance.

10.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731434

ABSTRACT

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Subject(s)
Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
11.
Nat Commun ; 15(1): 4334, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773174

ABSTRACT

Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.

12.
Transl Vis Sci Technol ; 13(5): 21, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780954

ABSTRACT

Purpose: This study aimed to investigate the possible relationship between retinal vascular abnormalities and amblyopia by analyzing vascular structures of fundus images. Methods: In this observational study, retinal fundus images were collected from 36 patients with unilateral amblyopia, 33 patients with bilateral amblyopia, and 36 healthy control volunteers. We developed a customized training algorithm based on U-Net to digitalize the vasculature in the fundus images to quantify vascular density (area and fractal dimension), skeleton length, and number of bifurcation points. For statistical comparisons, this study divided participants into two groups. The amblyopic eyes and the fellow eyes of patients with unilateral amblyopia formed the paired group, while bilateral amblyopic patients and healthy controls formed the independent group. Results: In the paired group, the vascular area (P = 0.007), vascular fractal dimension (P = 0.007), and vascular skeleton length (P = 0.002) of the amblyopic eyes were significantly smaller than those of the fellow eyes. In the independent group, significant decreases in the vascular fractal dimension (P = 0.006) and skeleton length (P = 0.048) were observed in bilateral amblyopia compared to control. The vascular area was also significantly correlated with best-corrected visual acuity in amblyopic eyes. Conclusions: This study demonstrated that retinal vascular density and skeleton length in amblyopic eyes were significantly smaller compared to control, indicating an association between the changes in retinal vascular features and the state of amblyopia. Translational Relevance: Our algorithm presents amblyopic retinal vascular changes that are more biologically interpretable for both clinicians and researchers.


Subject(s)
Algorithms , Amblyopia , Retinal Vessels , Visual Acuity , Humans , Amblyopia/physiopathology , Amblyopia/pathology , Female , Male , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Visual Acuity/physiology , Adult , Young Adult , Adolescent , Child , Fractals , Microvascular Density
13.
Article in English | MEDLINE | ID: mdl-38787669

ABSTRACT

With the benefit of deep learning techniques, recent researches have made significant progress in image compression artifacts reduction. Despite their improved performances, prevailing methods only focus on learning a mapping from the compressed image to the original one but ignore the intrinsic attributes of the given compressed images, which greatly harms the performance of downstream parsing tasks. Different from these methods, we propose to decouple the intrinsic attributes into two complementary features for artifacts reduction, i.e., the compression-insensitive features to regularize the high-level semantic representations during training and the compression-sensitive features to be aware of the compression degree. To achieve this, we first employ adversarial training to regularize the compressed and original encoded features for retaining high-level semantics, and we then develop the compression quality-aware feature encoder for compression-sensitive features. Based on these dual complementary features, we propose a Dual Awareness Guidance Network (DAGN) to utilize these awareness features as transformation guidance during the decoding phase. In our proposed DAGN, we develop a cross-feature fusion module to maintain the consistency of compression-insensitive features by fusing compression-insensitive features into the artifacts reduction baseline. Our method achieves an average 2.06 dB PSNR gains on BSD500, outperforming state-of-the-art methods, and only requires 29.7 ms to process one image on BSD500. Besides, the experimental results on LIVE1 and LIU4K also demonstrates the efficiency, effectiveness, and superiority of the proposed method in terms of quantitative metrics, visual quality, and downstream machine vision tasks.

14.
Clin Nutr ; 43(6): 1475-1487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723301

ABSTRACT

BACKGROUND & AIMS: The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS: NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS: KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by ß-hydroxybutyric acid (ß-OHB). MT2 Knockdown blunted the effects of ß-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or ß-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS: Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.


Subject(s)
Diet, Ketogenic , Metallothionein , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Up-Regulation , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/genetics , Metallothionein/genetics , Metallothionein/metabolism , Diet, Ketogenic/methods , Mice , Male , Liver/metabolism , Antioxidants/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , Disease Models, Animal , Lipid Metabolism , Time Factors
16.
Mol Carcinog ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812445

ABSTRACT

Interferon regulatory factor (IRF) family genes play a critical role in colorectal cancer (CRC) development and impact patient survival. This study evaluated the influence of functional single nucleotide polymorphisms (SNPs) in IRF genes on CRC survival, including functional predictions and experimental validations. Multivariate Cox regression analysis identified three linked SNPs as significant survival predictors, with the rs141112353 T/T genotype in the 3'UTR region of IRF6 significantly associated with decreased survival (HR = 1.60, P = 6E-04). Expression quantitative trait loci (eQTL) analysis indicated that the rs141112353 TA > T alteration reduced IRF6 expression. Dual luciferase assays showed lower activity for the T allele in the presence of hsa-miR-548ap-3p. Data from The Cancer Genome Atlas (TCGA) and other databases confirmed lower IRF6 levels in CRC tissues, correlating with worse survival and inversely with M2 macrophage infiltration. In vitro, IRF6 overexpression inhibited CRC cell proliferation and M2 macrophage polarization by downregulating MIF expression. These findings suggest that the IRF6 rs141112353 TA > T variant significantly affects CRC survival, potentially by enhancing miR-548-ap-3p binding affinity.

18.
Sci Rep ; 14(1): 12149, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802416

ABSTRACT

Hepatocellular carcinoma (HCC) represents a major global health threat with diverse and complex pathogenesis. Aldo-keto reductase family 1 member B10 (AKR1B10), a tumor-associated enzyme, exhibits abnormal expression in various cancers. However, a comprehensive understanding of AKR1B10's role in HCC is lacking. This study aims to explore the expression characteristics of AKR1B10 in HCC and its correlation with clinicopathological features, survival prognosis, and tumor immune microenvironment, further investigating its role and potential regulatory mechanisms in HCC. This study conducted comprehensive analyses using various bioinformatics tools and databases. Initially, differentially expressed genes related to HCC were identified from the GEO database, and the expression of AKR1B10 in HCC and other cancers was compared using TIMER and GEPIA databases, with validation of its specificity in HCC tissue samples using the HPA database. Furthermore, the relationship of AKR1B10 expression with clinicopathological features (age, gender, tumor size, staging, etc.) of HCC patients was analyzed using the TCGA database's LIHC dataset. The impact of AKR1B10 expression levels on patient prognosis was evaluated using Kaplan-Meier survival analysis and the Cox proportional hazards model. Additionally, the correlation of AKR1B10 expression with tumor biology-related signaling pathways and tumor immune microenvironment was studied using databases like GSEA, Targetscan, and others, identifying microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that regulate AKR1B10 expression to explore potential regulatory mechanisms. Elevated AKR1B10 expression was significantly associated with gender, primary tumor size, and fibrosis stage in HCC tissues. High AKR1B10 expression indicated poor prognosis and served as an independent predictor for patient outcomes. Detailed mechanism analysis revealed a positive correlation between high AKR1B10 expression, immune cell infiltration, and pro-inflammatory cytokines, suggesting a potential DANCR-miR-216a-5p-AKR1B10 axis regulating the tumor microenvironment and impacting HCC development and prognosis. The heightened expression of AKR1B10 in HCC is not only related to significant clinical-pathological traits but may also influence HCC progression and prognosis by activating key signaling pathways and altering the tumor immune microenvironment. These findings provide new insights into the role of AKR1B10 in HCC pathogenesis and highlight its potential as a biomarker and therapeutic target.


Subject(s)
Aldo-Keto Reductase Family 1 member B10 , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Liver Neoplasms/metabolism , Male , Female , Prognosis , Aldo-Keto Reductase Family 1 member B10/genetics , Aldo-Keto Reductase Family 1 member B10/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Kaplan-Meier Estimate , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Gene Expression Profiling , Computational Biology/methods
19.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763254

ABSTRACT

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Subject(s)
Coleoptera , Gene Expression Regulation, Developmental , Metamorphosis, Biological , Molting , Receptors, Cytoplasmic and Nuclear , Animals , Molting/genetics , Metamorphosis, Biological/genetics , Coleoptera/genetics , Coleoptera/growth & development , Coleoptera/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Larva/genetics , Larva/growth & development , Chitin/metabolism , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism , Phylogeny , Ecdysterone/metabolism
20.
Heliyon ; 10(9): e29997, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699030

ABSTRACT

Multiple myeloma (MM), marked by abnormal proliferation of plasma cells and production of monoclonal immunoglobulin heavy or light chains in the majority of patients, has traditionally been associated with poor survival, despite improvements achieved in median survival in all age groups since the introduction of novel agents. Survival has significantly improved with the development of new drugs and new treatment options, such as chimeric antigen receptor T-cell therapy (CAR-T), which have shown promise and given new hope in MM therapy. CARs are now classified as first-, second-, and third-generation CARs based on the number of monovalent to trivalent co-stimulatory molecules incorporated into their design. The scope of this review was relatively narrow because it was mainly about a comparison of the literature on the clinical application of CAR-T therapy in MM. Thus, our goal is to provide an overview of the new advances of CAR-T cells in the cure of MM, so in this review we looked at the progress of the clinical use of CAR-T cells in MM to try to provide a reference for their clinical use when managing MM.

SELECTION OF CITATIONS
SEARCH DETAIL
...