Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38722727

ABSTRACT

Competitive opinion maximization (COM) aims to determine some individuals (i.e., seed nodes) from social networks, propagating the desired opinions toward a target entity to their neighbors through social relationships when facing with its competitors (components) and maximize the opinion spread after the specific time. Current studies on COM are still in its infancy, while the only work merely considers the scenario that the strategy of competitors is known but ignores the unknown scenario. In addition, previous studies on COM cannot easily address the situation where some users might dynamically change their opinions. To address the COM issue, we investigate the multistage COM and propose a brand-new Q-learning-based opinion maximization framework (QOMF). Our QOMF consists of two components: dynamic opinion propagation and seeding process. We formulate the COM problem by maximizing relative effective opinions. To produce a dynamic opinion series more realistically, we design an opinion propagation model by joining the activation process and a dynamic opinion process. Moreover, we also verify that the opinion propagation model can reach convergence within finite iterations. To acquire the seed nodes, we design a multistage Q-learning seeding scheme by considering known and unknown competitor strategies, respectively. Experimental results on three real datasets demonstrate that the proposed method outperforms the benchmarks on reaching relatively effective opinions.

2.
Adv Mater ; 36(18): e2308799, 2024 May.
Article in English | MEDLINE | ID: mdl-38270498

ABSTRACT

The heterogeneity, species diversity, and poor mechanical stability of solid electrolyte interphases (SEIs) in conventional carbonate electrolytes result in the irreversible exhaustion of lithium (Li) and electrolytes during cycling, hindering the practical applications of Li metal batteries (LMBs). Herein, this work proposes a solvent-phobic dynamic liquid electrolyte interphase (DLEI) on a Li metal (Li-PFbTHF (perfluoro-butyltetrahydrofuran)) surface that selectively transports salt and induces salt-derived SEI formation. The solvent-phobic DLEI with C-F-rich groups dramatically reduces the side reactions between Li, carbonate solvents, and humid air, forming a LiF/Li3PO4-rich SEI. In situ electrochemical impedance spectroscopy and Ab-initio molecular dynamics demonstrate that DLEI effectively stabilizes the interface between Li metal and the carbonate electrolyte. Specifically, the LiFePO4||Li-PFbTHF cells deliver 80.4% capacity retention after 1000 cycles at 1.0 C, excellent rate capacity (108.2 mAh g-1 at 5.0 C), and 90.2% capacity retention after 550 cycles at 1.0 C in full-cells (negative/positive (N/P) ratio of 8) with high LiFePO4 loadings (15.6 mg cm-2) in carbonate electrolyte. In addition, the 0.55 Ah pouch cell of 252.0 Wh kg-1 delivers stable cycling. Hence, this study provides an effective strategy for controlling salt-derived SEI to improve the cycling performances of carbonate-based LMBs.

3.
Small ; 20(7): e2305494, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37797191

ABSTRACT

Lithium-sulfur (Li-S) batteries hold the superiority of eminent theoretical energy density (2600 Wh kg-1 ). However, the ponderous sulfur reduction reaction and the issue of polysulfide shuttling pose significant obstacles to achieving the practical wide-temperature operation of Li-S batteries. Herein, a covalent organic nanosheet-wrapped carbon nanotubes (denoted CON/CNT) composite is synthesized as an electrocatalyst for wide-temperature Li-S batteries. The design incorporates the CON skeleton, which contains imide and triazine functional units capable of chemically adsorbing polysulfides, and the underlaid CNTs facilitate the conversion of captured polysulfides enabled by enhanced conductivity. The electrocatalytic behavior and chemical interplay between polysulfides and the CON/CNT interlayer are elucidated by in situ X-ray diffraction detections and theoretical calculations. Resultantly, the CON/CNT-modified cells demonstrate upgraded performances, including wide-temperature operation ranging from 0 to 65 °C, high-rate performance (625 mAh g-1 at 5.0 C), exceptional high-rate cyclability (1000 cycles at 5.0 C), and stable operation under high sulfur loading (4.0 mg cm-2 ) and limited electrolyte (5 µL mgs -1 ). These findings might guide the development of advanced Li-S batteries.

4.
ACS Nano ; 17(12): 11527-11536, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37288710

ABSTRACT

High-performance lithium-sulfur (Li-S) batteries that can work normally under harsh conditions have attracted tremendous attention; however, the sluggish reaction kinetics of polysulfide conversions at low temperatures as well as the notorious polysulfide shuttling at high temperatures remain to be resolved. Herein, a multibranched vanadium nitride (MB-VN) electrocatalyst has been designed and deployed for Li-S batteries. Both experimental (time-of-flight secondary ion mass spectroscopy and adsorption tests) and theoretical results verify the strong chemical adsorption capability and high electrocatalytic activity of MB-VN with respect to polysulfides. Moreover, in situ Raman characterization manifests the effective inhibition of polysulfide shuttling by the MB-VN electrocatalyst. Using MB-VN-modified separators, the Li-S batteries deliver an excellent rate capability (707 mAh g-1 at 3.0 C) and great cyclic stability (678 mAh g-1 after 400 cycles at 1.0 C) at room temperature. With 6.0 mg cm-2 of sulfur and a lean electrolyte volume of ∼6 µL mgs-1, Li-S batteries exhibit a high areal capacity of 5.47 mAh cm-2. Even over a wide temperature range (-20 to +60 °C), the Li-S batteries still maintain stable cyclic performance at high current rates. This work demonstrates that metal nitride based electrocatalysts can realize low-/high-temperature-tolerant Li-S batteries.

5.
Nano Lett ; 23(11): 5272-5280, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37260235

ABSTRACT

Zinc-iodine (Zn-I2) batteries have garnered significant attention for their high energy density, low cost, and inherent safety. However, several challenges, including polyiodide dissolution and shuttling, sluggish iodine redox kinetics, and low electrical conductivity, limit their practical applications. Herein, we designed a highly efficient electrocatalyst for Zn-I2 batteries by uniformly dispersing Ni single atoms (NiSAs) on hierarchical porous carbon skeletons (NiSAs-HPC). In situ Raman analysis revealed that the conversion of soluble polyiodides (I3- and I5-) was significantly accelerated using NiSAs-HPC because of the remarkable electrocatalytic activity of NiSAs. The resulting Zn-I2 batteries with NiSAs-HPC/I2 cathodes delivered exceptional rate capability (121 mAh g-1 at 50 C), and ultralong cyclic stability (over 40 000 cycles at 50 C). Even under 11.6 mg cm-2 iodine, Zn-I2 batteries still exhibited an impressive cyclic stability with a capacity retention of 93.4% and 141 mAh g-1 after 10 000 cycles at 10 C.

7.
J Colloid Interface Sci ; 640: 908-916, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907150

ABSTRACT

Lithium-sulfur (Li-S) batteries are featured with high gravimetric energy density, yet their commercial application is significantly deteriorated with the severe self-discharging resulted from the polysulfides shuttle and sluggish electrochemical kinetics. Here, a hierarchical porous carbon nanofibers implanted with Fe/Ni-N (denoted as Fe-Ni-HPCNF) catalytic sites are prepared and used as a kinetics booster toward anti-self-discharged Li-S batteries. In this design, the Fe-Ni-HPCNF possesses interconnected porous skeleton and abundant exposed active sites, enabling fast Li-ion conduction, excellent shuttle inhibition and catalytic ability for polysulfides' conversion. Combined with these advantages, this cell with the Fe-Ni-HPCNF equipped separator exhibits an ultralow self-discharged rate of 4.9% after resting for one week. Moreover, the modified batteries deliver a superior rate performance (783.3 mAh g-1 at 4.0 C) and an outstanding cycling life (over 700 cycles with 0.057% attenuation rate at 1.0 C). This work may guide the advanced design of anti-self-discharged Li-S batteries.

8.
Inorg Chem ; 62(15): 6032-6046, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37000896

ABSTRACT

Transition-metal oxides as anodes for lithium-ion batteries (LIBs) have attracted enormous interest because of their high theoretical capacity, low cost, and high reserve abundance. Unfortunately, they commonly suffer from poor electronic and ionic conductivity and relatively large volume expansion during discharge/charge processes, thereby triggering inferior cyclic performance and rate capability. Herein, a molybdenum-zinc bimetal oxide-based composite structure (Zn2Mo3O8/ZnO/rGO) with rectangular Zn2Mo3O8/ZnO nanosheets uniformly dispersed on reduced graphene oxide (rGO) has been prepared by using a simple and controllable cyanometallic framework template method. The Zn2Mo3O8/ZnO rectangular nanosheets with desirable porous features are composed of nanocrystalline subunits, facilitating the exposure of abundant active sites and providing sufficient contact with the electrolyte. Benefiting from the composition and structural merits as well as the induced synergistic effects, the Zn2Mo3O8/ZnO/rGO composite as LIB anodes delivers superior electrochemical properties, including high reversible capacity (960 mA h g-1 after 100 cycles at 200 mA g-1), outstanding rate performance (417 mA h g-1 at 10,000 mA g-1), and admirable long-term cyclic stability (862 mA h g-1 after 400 cycles at 1000 mA g-1). The mechanism of lithium storage and the formation of SEI film are systematically elucidated. This work provides an effective strategy for synthesizing promising Mo-cluster compound-based anodes for high-performance LIBs.

9.
Adv Mater ; 35(32): e2212116, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36961362

ABSTRACT

Lithium-sulfur (Li-S) batteries have become one of the most promising new-generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg-1 ), cost-effectiveness, and environmental friendliness. Nevertheless, their practical applications are seriously impeded by the shuttle effect of soluble lithium polysulfides (LiPSs), and the uncontrolled dendrite growth of metallic Li, which result in rapid capacity fading and battery safety problems. A systematic and comprehensive review of the cooperative combination effect and tackling the fundamental problems in terms of cathode and anode synchronously is still lacking. Herein, for the first time, the strategies for inhibiting shuttle behavior and dendrite-free Li-S batteries simultaneously are summarized and classified into three parts, including "two-in-one" S-cathode and Li-anode host materials toward Li-S full cell, "two birds with one stone" modified functional separators, and tailoring electrolyte for stabilizing sulfur and lithium electrodes. This review also emphasizes the fundamental Li-S chemistry mechanism and catalyst principles for improving electrochemical performance; advanced characterization technologies to monitor real-time LiPS evolution are also discussed in detail. The problems, perspectives, and challenges with respect to inhibiting the shuttle effect and dendrite growth issues as well as the practical application of Li-S batteries are also proposed.

10.
Adv Sci (Weinh) ; 9(17): e2200740, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35396797

ABSTRACT

Phosphorus- and phosphide-based materials with remarkable physicochemical properties and low costs have attracted significant attention as the anodes of alkali metal (e.g., Li, Na, K, Mg, Ca)-ion batteries (AIBs). However, the low electrical conductivity and large volume expansion of these materials during electrochemical reactions inhibit their practical applications. To solve these problems, various promising solutions have been explored and utilized. In this review, the recent progress in AIBs using phosphorus- and phosphide-based materials is summarized. Thereafter, the in-depth working principles of diverse AIBs are discussed and predicted. Representative works with design concepts, construction approaches, engineering strategies, special functions, and electrochemical results are listed and discussed in detail. Finally, the existing challenges and issues are concluded and analyzed, and future perspectives and research directions are given. This review can provide new guidance for the future design and practical applications of phosphorus- and phosphide-based materials used in AIBs.

11.
IEEE Trans Cybern ; 52(7): 6684-6696, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33476273

ABSTRACT

This article proposes an adaptive localized decision variable analysis approach under the decomposition-based framework to solve the large-scale multiobjective and many-objective optimization problems (MaOPs). Its main idea is to incorporate the guidance of reference vectors into the control variable analysis and optimize the decision variables using an adaptive strategy. Especially, in the control variable analysis, for each search direction, the convergence relevance degree of each decision variable is measured by a projection-based detection method. In the decision variable optimization, the grouped decision variables are optimized with an adaptive scalarization strategy, which is able to adaptively balance the convergence and diversity of the solutions in the objective space. The proposed algorithm is evaluated with a suite of test problems with 2-10 objectives and 200-1000 variables. Experimental results validate the effectiveness and efficiency of the proposed algorithm on the large-scale multiobjective and MaOPs.

12.
IEEE Trans Cybern ; 52(12): 12698-12711, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34260364

ABSTRACT

The performance of decomposition-based algorithms is sensitive to the Pareto front shapes since their reference vectors preset in advance are not always adaptable to various problem characteristics with no a priori knowledge. For this issue, this article proposes an adaptive reference vector reinforcement learning (RVRL) approach to decomposition-based algorithms for industrial copper burdening optimization. The proposed approach involves two main operations, that is: 1) a reinforcement learning (RL) operation and 2) a reference point sampling operation. Given the fact that the states of reference vectors interact with the landscape environment (quite often), the RL operation treats the reference vector adaption process as an RL task, where each reference vector learns from the environmental feedback and selects optimal actions for gradually fitting the problem characteristics. Accordingly, the reference point sampling operation uses estimation-of-distribution learning models to sample new reference points. Finally, the resultant algorithm is applied to handle the proposed industrial copper burdening problem. For this problem, an adaptive penalty function and a soft constraint-based relaxing approach are used to handle complex constraints. Experimental results on both benchmark problems and real-world instances verify the competitiveness and effectiveness of the proposed algorithm.

13.
J Colloid Interface Sci ; 567: 28-36, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32035391

ABSTRACT

The development of novel high volumetric capacity electrode materials is crucial to the application of lithium-ion batteries (LIBs) in miniaturized consumer electronics. In this work, a novel tungsten-based octahedron (CoWO4/Co3O4) with unique hierarchical core-shell structure is successfully fabricated by simply calcinating a cyanide-metal framework precursor. Benefitting from the heavy element W, the CoWO4/Co3O4 octahedrons show a high mass density of 5.18 g cm-3. When applied as anode materials for LIBs, the CoWO4/Co3O4 octahedrons exhibit an ultrahigh volumetric capacity (6226 mAh cm-3 after 350 cycles at 0.4 A g-1), superior rate capability (3165 mAh cm-3 at 3.0 A g-1) and outstanding long-term cycling performance (4703 mAh cm-3 at 1.0 A g-1 after 800 cycles). The extraordinary lithium storage performance can be ascribed to the unique hierarchical core-shell structure and the possible synergistic effect between W and Co, which provide more Li+ insertion sites and effectively buffer the volume variation during cycling. This work not only provides an ultrahigh volumetric lithium storage anode, but also gives a simple and general strategy for the synthesis of novel anode materials for high volumetric energy density LIBs.

14.
Nanomicro Lett ; 12(1): 82, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-34138071

ABSTRACT

Functional carbonaceous materials for supercapacitors (SCs) without using acid for post-treatment remain a substantial challenge. In this paper, we present a less harmful strategy for preparing three-dimensional (3D) N,O-codoped egg-box-like carbons (EBCs). The as-prepared EBCs with opened pores provide plentiful channels for ion fast transport, ensure the effective contact of EBCs electrodes and electrolytes, and enhance the electron conduction. The nitrogen and oxygen atoms doped in EBCs improve the surface wettability of EBC electrodes and provide the pseudocapacitance. Consequently, the EBCs display a prominent areal capacitance of 39.8 µF cm-2 (340 F g-1) at 0.106 mA cm-2 in 6 M KOH electrolyte. The EBC-based symmetric SC manifests a high areal capacitance to 27.6 µF cm-2 (236 F g-1) at 0.1075 mA cm-2, a good rate capability of 18.8 µF cm-2 (160 F g-1) at 215 mA cm-2 and a long-term cycle stability with only 1.9% decay after 50,000 cycles in aqueous electrolyte. Impressively, even in all-solid-state SC, EBC electrode shows a high areal capacitance of 25.0 µF cm-2 (214 F g-1) and energy density of 0.0233 mWh cm-2. This work provides an acid-free process to prepare electrode materials from industrial by-products for advanced energy storage devices.

15.
Nat Commun ; 10(1): 2513, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175299

ABSTRACT

Redox flow batteries are promising for large-scale energy storage, but some long-standing problems such as safety issues, system cost and cycling stability must be resolved. Here we demonstrate a type of redox flow battery that is based on all-polymer particulate slurry electrolytes. Micro-sized and uniformly dispersed all-polymer particulate suspensions are utilized as redox-active materials in redox flow batteries, breaking through the solubility limit and facilitating the application of insoluble redox-active materials. Expensive ion-exchange membranes are replaced by commercial dialysis membranes, which can simultaneously realize the rapid shuttling of H+ ions and cut off the migration of redox-active particulates across the separator via size exclusion. In result, the all-polymer particulate slurry redox flow batteries exhibit a highly reversible multi-electron redox process, rapid electrochemical kinetics and ultra-stable long-term cycling capability.

16.
Nanoscale ; 11(21): 10439-10445, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31112193

ABSTRACT

N2 fixation is one of the most important chemical reactions in the ecosystem of our planet. However, the industrial Haber-Bosch ammonia synthesis process is restricted by harsh reaction conditions (350-550 °C, 150-350 atm) and undesirable environmental effects (a large amount of CO2 emission). Photocatalytic N2 fixation is promising for achieving sustainable ammonia synthesis under ambient conditions with lower energy input and less environmental issues. However, the known photocatalysts for N2 reduction under mild conditions still face the great challenge of very low energy conversion efficiency. Herein, we report a facile solution-phase method to prepare the heterojunctions based on n-type Bi2MoO6 nanorods and oxygen-vacancy-rich p-type BiOBr nanosheets (Bi2MoO6/OV-BiOBr). Originating from the formation of p-n junctions and suitable bandgap configuration, the Bi2MoO6/OV-BiOBr heterojunctions exhibit effective light utilization and photogenerated electron-hole separation properties. Moreover, it is confirmed that the oxygen vacancies on BiOBr nanosheets are propitious to the adsorption and activation of N2 molecules. Benefiting from these merits, the Bi2MoO6/OV-BiOBr heterojunctions exhibit improved photocatalytic performance for N2 conversion to ammonia without any noble metal co-catalysts and sacrificial reagents under ambient conditions.

17.
Nanoscale ; 11(18): 8803-8811, 2019 May 09.
Article in English | MEDLINE | ID: mdl-30998229

ABSTRACT

Antimony (Sb) based anodes with high conductivity and capability have shown great promise for applications in lithium ion batteries (LIBs). However, they often suffer from poor cycling stability because of the drastic volume variation and structural degradation on undergoing lithiation-delithiation processes. Here we demonstrate a novel Sb-based anode with a free-standing structure realized by uniformly implanting intermetallic compound breithauptite (nickel antimonide, NiSb) nanocrystals into nitrogen-doped carbon nanofibers (NiSb@NCNFs). The discharge/charge behavior of NiSb@NCNFs was systematically investigated by ex situ characterization, which revealed a special "dealloying-lithiation/delithiation-realloying" cycling mechanism. The NiSb nanocrystals possess high lithium storage capacity, and the interconnected network of NCNFs can accommodate the volume variation of encapsulated NiSb nanoparticles, while also providing smooth pathways for charge transport. Compared to other Sb-based anodes, the NiSb@NCNF anode presents exceptional reversible capacity (720 mA h g-1 at a current density of 100 mA g-1) and greatly enhanced cycling life at high rates (510 mA h g-1 after 2000 cycles at 2000 mA g-1). Furthermore, the free-standing NiSb@NCNF anode is free of binders, conductive additives and metal current collectors, exhibiting high flexibility and remarkable performances for the construction of flexible and bendable soft-packed full Li-ion pouch cells.

18.
Nano Lett ; 18(12): 7949-7954, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30499680

ABSTRACT

Lithium-sulfur (Li-S) batteries with high theoretical energy density have caught enormous attention for electrochemical power source applications. However, the development of Li-S batteries is hindered by the electrochemical performance decay that resulted from low electrical conductivity of sulfur and serious shuttling effect of intermediate polysulfides. Moreover, the areal capacity is usually restricted by the low areal sulfur loadings (1.0-3.0 mg cm-2). When the areal sulfur loading increases to a practically accepted level above 3.0-5.0 mg cm-2, the areal capacity and cycling life tend to become inferior. Herein, we report an effective polysulfide mediator composed of nitrogen-doped carbon nanotube (N-CNT) forest planted on cobalt nanoflowers (N-CNTs/Co-NFs). The abundant pores in N-CNTs/Co-NFs can allow a high sulfur content (78 wt %) and block the dissolution/diffusion of polysulfides via physical confinement, and the Co nanoparticles and nitrogen heteroatoms (4.3 at. %) can enhance the polysulfide retention via strong chemisorption capability. Moreover, the planted N-CNT forest on N-CNTs/Co-NFs can enable fast electron transfer and electrolyte penetration. Benefiting from the above merits, the sulfur-filled N-CNTs/Co-NFs (S/N-CNTs/Co-NFs) cathodes with high areal sulfur loadings exhibit low self-discharge rate, high areal capacity, and stable cycling performance.

19.
ACS Nano ; 12(12): 12492-12502, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30474962

ABSTRACT

Rechargeable magnesium (Mg) batteries assembled with dendrite-free, safe, and earth-abundant metal Mg anodes potentially have the advantages of high theoretical specific capacity and energy density. Nevertheless, owing to the large polarity of divalent Mg2+ ions, the insertion of Mg2+ into electrode materials suffers from sluggish kinetics, which seriously limit the performance of Mg batteries. Herein, we demonstrate an atomic substitution strategy for the controlled preparation of ultrathin black TiO2- x (B-TiO2- x) nanoflakes with rich oxygen vacancies (OVs) and porosity by utilizing ultrathin 2D TiS2 nanoflakes as precursors. We find out that the presence of OVs in B-TiO2- x electrode material can greatly improve the electrochemical performances of rechargeable Mg batteries. Both experimental results and density functional theory simulations confirm that the introduction of OVs can remarkably enhance the electrical conductivity and increase the number of active sites for Mg2+ ion storage. The vacancy-rich B-TiO2- x nanoflakes exhibit high reversible capacity and good capacity retention after long-term cycling at large current densities. It is hoped that this work can provide valuable insights and inspirations on the defect engineering of electrode materials for rechargeable magnesium batteries.

20.
Nano Lett ; 18(11): 7372-7377, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30350657

ABSTRACT

The catalytic conversion of nitrogen to ammonia is one of the most important processes in nature and chemical industry. However, the traditional Haber-Bosch process of ammonia synthesis consumes substantial energy and emits a large amount of carbon dioxide. Solar-driven nitrogen fixation holds great promise for the reduction of energy consumption and environmental pollution. On the basis of both experimental results and density functional theory calculations, here we report that the oxygen vacancy engineering on ultrathin BiOBr nanosheets can greatly enhance the performance for photocatalytic nitrogen fixation. Through the addition of polymetric surfactant (polyvinylpyrrolidone, PVP) in the synthesis process, VO-BiOBr nanosheets with desirable oxygen vacancies and dominant exposed {001} facets were successfully prepared, which effectively promote the adsorption of inert nitrogen molecules at ambient condition and facilitate the separation of photoexcited electrons and holes. The oxygen defects narrow the bandgap of VO-BiOBr photocatalyst and lower the energy requirement of exciton generation. In the case of the specific surface areas are almost equal, the VO-BiOBr nanosheets display a highly improved photocatalytic ammonia production rate (54.70 µmol·g-1·h-1), which is nearly 10 times higher than that of the BiOBr nanoplates without oxygen vacancies (5.75 µmol·g-1·h-1). The oxygen vacancy engineering on semiconductive nanomaterials provides a promising way for rational design of catalysts to boost the rate of ammonia synthesis under mild conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...