Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.688
Filter
1.
Water Environ Res ; 96(6): e11056, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825347

ABSTRACT

Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.


Subject(s)
Autotrophic Processes , Benzoic Acid , Denitrification , Lactic Acid , Sulfur , Benzoic Acid/metabolism , Sulfur/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Microbiota/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods
2.
Sci Total Environ ; 935: 173343, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777069

ABSTRACT

Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.

3.
Chin Med J (Engl) ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802283

ABSTRACT

ABSTRACT: Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.

4.
Infect Agent Cancer ; 19(1): 21, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693556

ABSTRACT

AIMS: This study compared the prevalences of metabolic syndrome and of cardiac or kidney comorbidities among patients with hepatocellular carcinoma (HCC) associated with metabolic dysfunction-related fatty liver disease (MAFLD), chronic infection with hepatitis B or C virus (HBV or HCV), or the combination of MAFLD and chronic HBV infection. METHODS: Medical records were retrospectively analyzed for patients with HCC who underwent hepatectomy between March 2013 and March 2023. Patients with HCC of different etiologies were compared in terms of their clinicodemographic characteristics and laboratory data before surgery. RESULTS: Of the 2422 patients, 1,822 (75.2%) were chronically infected with HBV without MAFLD and HCV, 415 (17.2%) had concurrent MAFLD and chronic HBV infection but no HCV infection, 121 (5.0%) had MAFLD without hepatitis virus infection, and 64 (2.6%) were chronically infected with HCV in the presence or absence of MAFLD and HBV infection. Compared to patients chronically infected with HBV without MAFLD and HCV, those with MAFLD but no hepatitis virus infection showed significantly lower prevalence of cirrhosis, ascites, portal hypertension, alpha-fetoprotein concentration ≥ 400 ng/mL, tumor size > 5 cm, multinodular tumors and microvascular invasion. Conversely, they showed significantly higher prevalence of metabolic syndrome, hypertension, type 2 diabetes, abdominal obesity, history of cardiovascular disease, T-wave alterations, hypertriglyceridemia and hyperuricemia, as well as higher risk of arteriosclerotic cardiovascular disease. Compared to patients with MAFLD but no hepatitis virus infection, those with concurrent MAFLD and chronic infection with HBV showed significantly higher prevalence of cirrhosis, ascites and portal hypertension, but significantly lower prevalence of hypertension and history of cardiovascular disease. Compared to patients with other etiologies, those chronically infected with HCV in the presence or absence of MAFLD and HBV infection, showed significantly higher prevalence of cirrhosis, portal hypertension, ascites, and esophagogastric varices. CONCLUSION: Patients with HCC associated with MAFLD tend to have a background of less severe liver disease than those with HCC of other etiologies, but they may be more likely to suffer metabolic syndrome or comorbidities affecting the heart or kidneys.

5.
ACS Med Chem Lett ; 15(5): 722-730, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38746878

ABSTRACT

Colony stimulating factor-1 receptor (CSF1R or c-FMS), a class III receptor tyrosine kinase expressed on members of the mononuclear phagocyte system (MPS), plays a key role in the proper functioning of macrophages, microglia, and related cells. Aberrant signaling through CSF1R has been associated with a variety of disease states, including cancer, inflammation, and neurodegeneration. In this Letter, we detail our efforts to develop novel CSF1R inhibitors. Drawing on previously described compounds, including GW2580 (4), we have discovered a novel series of compounds based on the imidazo[4,5-b]pyridine scaffold. Initial structure-activity relationship studies culminated in the identification of 36, a lead compound with potent CSF1R biochemical and cellular activity, acceptable in vitro ADME properties, and oral exposure in rat.

6.
Front Plant Sci ; 15: 1372580, 2024.
Article in English | MEDLINE | ID: mdl-38736444

ABSTRACT

The Homeodomain-Leucine Zipper (HD-ZIP) transcription factors play a pivotal role in governing various aspects of plant growth, development, and responses to abiotic stress. Despite the well-established importance of HD-ZIPs in many plants, their functions in Acoraceae, the basal lineage of monocots, remain largely unexplored. Using recently published whole-genome data, we identified 137 putative HD-ZIPs in two Acoraceae species, Acorus gramineus and Acorus calamus. These HD-ZIP genes were further classified into four subfamilies (I, II, III, IV) based on phylogenetic and conserved motif analyses, showcasing notable variations in exon-intron patterns among different subfamilies. Two microRNAs, miR165/166, were found to specifically target HD-ZIP III genes with highly conserved binding sites. Most cis-acting elements identified in the promoter regions of Acoraceae HD-ZIPs are involved in modulating light and phytohormone responsiveness. Furthermore, our study revealed an independent duplication event in Ac. calamus and a one-to-multiple correspondence between HD-ZIP genes of Ac. calamus and Ac. gramineus. Expression profiles obtained from qRT-PCR demonstrated that HD-ZIP I genes are strongly induced by salinity stress, while HD-ZIP II members have contrasting stress responses in two species. HD-ZIP III and IV genes show greater sensitivity in stress-bearing roots. Taken together, these findings contribute valuable insights into the roles of HD-ZIP genes in stress adaptation and plant resilience in basal monocots, illuminating their multifaceted roles in plant growth, development, and response to abiotic stress.

7.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38739426

ABSTRACT

With the development of microfluidic technology, microfluidic chips have played a positive role in applications such as cell culture, microfluidic PCR, and nanopore gene sequencing. However, the presence of bubbles interferes with fluid flow and has a significant impact on experimental results. There are many reasons for the generation of bubbles in microfluidic chips, such as pressure changes inside the chip, air vibration inside the chip, and the open chip guiding air into the chip when driving fluid. This study designed and prepared a microfluidic device based on polydimethylsiloxane. First, air was actively introduced into the microfluidic chip, and bubbles were captured through the microfluidic device to simulate the presence of bubbles inside the chip in biological experiments. To remove bubbles trapped in the microfluidic chip, distilled water, distilled water containing surfactants, and mineral oil were pumped into the microfluidic chip. We compared and discussed the bubble removal efficiency under different driving fluids, driving pressures, and open/closed channel configurations. This study helps to understand the mechanism of bubble formation and removal in microfluidic devices, optimize chip structure design and experimental reagent selection, prevent or eliminate bubbles, and reduce the impact of bubbles on experiments.

8.
Integr Comp Biol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755000

ABSTRACT

Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects' performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes.

9.
J Cardiothorac Surg ; 19(1): 290, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750504

ABSTRACT

OBJECTIVES: This study aimed to identify the risk factors for postoperative atrial fibrillation in patients with valvular atrial fibrillation, and establish predictive models of atrial fibrillation recurrence. METHODS: Overall, 224 patients who underwent radiofrequency ablation of atrial fibrillation from November 2014 to November 2020 were included. The statistical package for social sciences, X-tile, and R-studio were used for statistical analysis. RESULTS: Patients were divided into training and validation sets according to a ratio of 3:1. The training set was analysed using univariate and multivariate Cox regression analysis and showed that preoperative uric acid > 401 µmol/L (P = 0.006), B-type natriuretic peptide > 202 ng/L (P = 0.042), hypersensitivity C-reactive protein > 6.1 mg/L (P = 0.026), erythrocyte sedimentation rate > 7.0 mm/h (P = 0.016), preoperative left atrial diameter > 48 mm (P = 0.031) were significantly correlated with the recurrence of atrial fibrillation after radiofrequency ablation in patients with valvular atrial fibrillation. In the training set, a Cox regression model of the five related factors was established using the R language. The C-index of the model was 0.82, and the area under the receiver operating characteristic curve was 0.831 (P < 0.001). Internal and external verification was performed in the training and validation sets, respectively, and both showed that the fit of the verification curve was relatively good at 3 months, 6 months, 1 year, and 3 years postoperatively. After calculating the weight of each related factor using the nomogram, a new risk predictive model (BLUCE) for postoperative atrial fibrillation was established. CONCLUSIONS: In patients with atrial fibrillation, preoperative uric acid, B-type natriuretic peptide, hypersensitivity C-reactive protein, erythrocyte sedimentation rate, and left atrial diameter are risk factors for atrial fibrillation or atrial flutter recurrence after radiofrequency ablation. The BLUCE predictive model can distinguish high-risk groups of postoperative atrial fibrillation. High-risk patients in the BLUCE model were more likely to experience recurrence of atrial fibrillation after radiofrequency ablation and a low possibility of maintaining sinus rhythm.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Heart Valve Diseases , Mitral Valve , Recurrence , Humans , Atrial Fibrillation/surgery , Male , Female , Middle Aged , Heart Valve Diseases/surgery , Mitral Valve/surgery , Catheter Ablation/methods , Risk Factors , Retrospective Studies , Aged , Radiofrequency Ablation/methods , Risk Assessment/methods
10.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750519

ABSTRACT

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Subject(s)
Bone Regeneration , Calcium Phosphates , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rabbits , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Osteogenesis/drug effects , Polyesters/chemistry , Humans , Cell Differentiation/drug effects , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Schwann Cells/drug effects , Nanofibers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Selenium/chemistry , Selenium/pharmacology
11.
Plants (Basel) ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794465

ABSTRACT

Water and nitrogen management are crucial for food security and the efficient use of water and fertilizer, especially in arid regions. Three irrigation levels, namely, 80% crop water requirement (ETC) (W1), 100% ETC (W2), and 120% ETC (W3), and three nitrogen application levels, namely, 0 kg/ha (N1), 207 kg/ha (N2), and 276 kg/ha (N3), were used as the experimental treatments, and a control group, denoted as CK, was created. The results show that the maximum height achieved was 82.16 cm under W3N3. There was a single-peak variation trend throughout the growth stages of SPAD. It peaked at 58.44 under W3N3 and then at 27.9 under W2N2. The net photosynthetic and transpiration rates displayed bimodal peaks and the phenomenon of a "photosynthetic midday depression". And the prominent peaks in leaf water use efficiency occurred at 14:00 and 18:00, alongside noteworthy enhancements observed under the W3 treatment. Water and nitrogen and their interactions significantly affected the dry matter (DM) of winter wheat, with the spike accounting for the highest percentage. The W2N2 treatment demonstrated superior effectiveness in enhancing winter wheat water use efficiency, offering the potential to decrease irrigation requirements by 20% and nitrogen application by 25%. Moreover, the maximum PFPN attained under W2N2 reached 60.13, representing a noteworthy 35.25% increase compared to the control group (CK), but the HI of the W2N2 treatment only reached 0.56. The highest HI was achieved with W3N2 (0.73), and the nitrogen application of 207 kg/ha was more conducive to obtaining a higher HI. The highest yield was achieved under W3N3 (13.599 t/ha), followed by W2N2 (12.447 t/ha), and the spike proportion exceeded 60% with W2N2, and its production cost and economic benefit ratio of under 0.31 were superior to those for other treatments. Multiple regression analysis revealed that the maximum yield reached 12.944 t/ha with an irrigation amount of 3420.1 m3/ha and a nitrogen application of 251.92 kg/ha. Overall, our study suggests using an optimal water-nitrogen combination, specifically an irrigation level of 2829 m3/ha and a nitrogen application rate of 207 kg/ha, leading to increased winter wheat yields and economic benefits. These research results provide a pragmatic technique for improving winter wheat production in southern Xinjiang.

12.
J Transl Int Med ; 12(2): 157-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38799791

ABSTRACT

Background and Objectives: Irbesartan has been widely used in the clinical treatment of diabetic kidney disease (DKD). However, the molecular mechanism of its delay of DKD disease progression has not been fully elucidated. The aim of the present study was to investigate the mechanism of irbesartan in the treatment of DKD. Materials and Methods: C57BL/KsJ db/db mice were randomly divided into the model group and irbesartan-treated group. After treatment with irbesartan for 12 weeks, the effects on blood glucose, body weight, 24-h urinary albumin, and renal injuries were evaluated. Microarray was used to determine the differentially expressed genes (DEGs) in the renal cortex of mice. |Log FC| <0.5 and false discovery rate (FDR) <0.25 were set as the screening criteria. Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), protein-protein interaction (PPI) network and modules, and microRNA (miRNA)-DEGs network analysis were applied to analyze the DEGs. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of microarray. Results: The present study demonstrated irbesartan could significantly improve the renal function in db/db mice through decreasing 24-h urinary albumin and alleviating the pathological injury of kidney. Irbesartan may affect the expression of numerous kidney genes involved in circadian rhythm, cell cycle, micoRNAs in cancer, and PI3K-AKT signaling pathway. In the miRNA-DEGs network, miR-1970, miR-703, miR-466f, miR-5135, and miR-132-3p were the potential targets for irbesartan treatment. The validation test confirmed that key genes regulating circadian rhythm (Arntl, Per3, and Dbp) and cell cycle (Prc1, Ccna2, and Ccnb2) were restored in db/db mice on treatment with Irbesartan. Conclusion: Generally, irbesartan can effectively treat DKD by regulating the circadian rhythm and cell cycle. The DEGs and pathways identified in the study will provide new insights into the potential mechanisms of irbesartan in the treatment of DKD.

13.
J Fungi (Basel) ; 10(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786710

ABSTRACT

Despite its ubiquitous infectivity to mammals with strong host specificity, our current knowledge about Pneumocystis has originated from studies of merely 4% of extant mammalian species. Further studies of Pneumocystis epidemiology across a broader range of animal species require the use of assays with high sensitivity and specificity. To this end, we have developed multiple universal Pneumocystis primers targeting different genetic loci with high amplification efficiency. Application of these primers to PCR investigation of Pneumocystis in free-living hares (Lepus townsendii, n = 130) and rabbits (Oryctolagus cuniculus, n = 8) in Canada revealed a prevalence of 81% (105/130) and 25% (2/8), respectively. Genotyping analysis identified five and two variants of Pneumocystis from hares and rabbits, respectively, with significant sequence divergence between the variants from hares. Based on phylogenetic analysis using nearly full-length sequences of the mitochondrial genome, nuclear rRNA operon and dihydropteroate synthase gene for the two most common variants, Pneumocystis in hares and rabbits are more closely related to each other than either are to Pneumocystis in other mammals. Furthermore, Pneumocystis in both hares and rabbits are more closely related to Pneumocystis in primates and dogs than to Pneumocystis in rodents. The high prevalence of Pneumocystis in hares (P. sp. 'townsendii') suggests its widespread transmissibility in the natural environment, similar to P. oryctolagi in rabbits. The presence of multiple distinct Pneumocystis populations in hares contrasts with the lack of apparent intra-species heterogeneity in P. oryctolagi, implying a unique evolution history of P. sp. 'townsendii' in hares.

14.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790240

ABSTRACT

Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol (GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL genes within the barley genome using bioinformatics methods, subcellular localization, and protein structure analysis, finding that most of the barley COBL proteins have a signal peptide structure and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene expression in barley under various hormone treatments was conducted through qRT-PCR analysis, revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming to provide basic information for exploring the members of the HvCOBL gene family and to propose directions for further research.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Multigene Family , Phylogeny , Plant Growth Regulators , Plant Proteins , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Genome, Plant , Oxylipins/metabolism , Cyclopentanes/metabolism
15.
Anal Chem ; 96(21): 8416-8423, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38755966

ABSTRACT

Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process. The open-gap Au/AgAu displays much higher SERS efficiency than Au and Au/AgAu with an inner nanogap on detecting crystal violet due to the open-gap induced electromagnetic enhancement and improved molecular absorption. Furthermore, the open-gap Au/AgAu monolayer is prepared via interfacial self-assembly, which shows further improved SERS due to the dense and strong hotspots in the nanocavities induced by the electromagnetic coupling between adjacent open gaps. The monolayer possesses excellent signal stability, uniformity, and reproducibility. The analytic enhancement factor and relative standard deviation reach to 2.12 × 108 and 4.65% on detecting crystal violet, respectively. Moreover, the monolayer achieves efficient detection of thiram in apple juice, biphenyl-4-thiol, 4-mercaptobenzoic, melamine, and a mixed solution of four different molecules, showing great promise in practical detection.

16.
J Transl Int Med ; 12(2): 157-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779121

ABSTRACT

Background and Objectives: Irbesartan has been widely used in the clinical treatment of diabetic kidney disease (DKD). However, the molecular mechanism of its delay of DKD disease progression has not been fully elucidated. The aim of the present study was to investigate the mechanism of irbesartan in the treatment of DKD. Materials and Methods: C57BL/KsJ db/db mice were randomly divided into the model group and irbesartan-treated group. After treatment with irbesartan for 12 weeks, the effects on blood glucose, body weight, 24-h urinary albumin, and renal injuries were evaluated. Microarray was used to determine the differentially expressed genes (DEGs) in the renal cortex of mice. |Log FC| <0.5 and false discovery rate (FDR) <0.25 were set as the screening criteria. Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), protein-protein interaction (PPI) network and modules, and microRNA (miRNA)-DEGs network analysis were applied to analyze the DEGs. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of microarray. Results: The present study demonstrated irbesartan could significantly improve the renal function in db/db mice through decreasing 24-h urinary albumin and alleviating the pathological injury of kidney. Irbesartan may affect the expression of numerous kidney genes involved in circadian rhythm, cell cycle, micoRNAs in cancer, and PI3K-AKT signaling pathway. In the miRNA-DEGs network, miR-1970, miR-703, miR-466f, miR-5135, and miR-132-3p were the potential targets for irbesartan treatment. The validation test confirmed that key genes regulating circadian rhythm (Arntl, Per3, and Dbp) and cell cycle (Prc1, Ccna2, and Ccnb2) were restored in db/db mice on treatment with Irbesartan. Conclusion: Generally, irbesartan can effectively treat DKD by regulating the circadian rhythm and cell cycle. The DEGs and pathways identified in the study will provide new insights into the potential mechanisms of irbesartan in the treatment of DKD.

17.
J Colloid Interface Sci ; 669: 383-392, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718591

ABSTRACT

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

18.
Inorg Chem ; 63(21): 9701-9705, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38728855

ABSTRACT

In this study, new hybrid birefringent crystals of (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O were successfully synthesized by introducing a new birefringent group [C8H7N2O2]+ by a simple aqueous solution evaporation method. They crystallize in the P21/n space group, and their structure consists mainly of the π-conjugated group [C8H7N2O2]+ and the octahedron centered on Bi3+. By first-principles calculations, the birefringence response comes from the [C8H7N2O2]+ group with a planar π-conjugated structure. Meanwhile, the synthesis, structure, first-principles calculations, and optical properties are reported in this paper.

19.
Front Cardiovasc Med ; 11: 1391534, 2024.
Article in English | MEDLINE | ID: mdl-38818215

ABSTRACT

Objective: This study aimed to evaluate the impact of early rhythm control (ERC) on the occurrence of cardiocerebrovascular events in patients diagnosed with atrial fibrillation detected after stroke (AFDAS). Methods: A systematic search was conducted across nine databases from inception to October 15, 2023 to identify clinical trials comparing ERC with usual care interventions in AFDAS patients. The primary outcome assessed was recurrent stroke, with secondary outcomes including all-cause mortality, adverse events related to arrhythmias, and dementia. Results: Analysis of five studies, consisting of two randomized clinical trials (RCTs) involving 490 patients and three cohort studies involving 95,019 patients, revealed a reduced rate of recurrent stroke [odds ratio (OR) = 0.30, 95% confidence interval (CI) 0.11-0.80, P = 0.016 in RCTs; OR = 0.64, 95% CI 0.61-0.68, P < 0.00001 in cohort studies] and all-cause mortality (hazards ratio = 0.94, 95% CI 0.90-0.98, P = 0.005 in cohort studies) in the ERC group compared to the usual care group. In addition, ERC was associated with superior outcomes in terms of dementia. Conclusions: Patients with AFDAS who underwent ERC treatment exhibited a decreased risk of cardiocerebrovascular events compared to those receiving usual care. These results support the potential benefits of implementing an ERC strategy for this specific patient population. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, Identifier [CRD42023465994].

20.
Bioact Mater ; 39: 163-190, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38808156

ABSTRACT

Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on the targeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how to implement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections; 2) How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drug delivery microrobots have shown great application prospect in oral drug delivery due to their characteristics of flexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobots developed in recent years and divides them into four categories according to different driving modes: magnetic-controlled drug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobots and biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such as materials science, mechanical engineering, medicine, and control systems, this paper begins by introducing the gastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typical materials involved in the design process of oral drug delivery microrobots. To enhance readers' understanding of the working principles and design process of oral drug delivery microrobots, we present a guideline for designing such microrobots. Furthermore, the current development status of various types of oral drug delivery microrobots is reviewed, summarizing their respective advantages and limitations. Finally, considering the significant concerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translation for various oral drug delivery microrobots presented in this paper, providing corresponding suggestions for addressing some existing challenges.

SELECTION OF CITATIONS
SEARCH DETAIL
...