Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Zool ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897980

ABSTRACT

Intertidal organisms usually live near their upper thermal limits, and are vulnerable to future global warming. As a vital response to thermal stress, thermoregulatory strategy in physiological and behavioral performance is essential for organisms coping with thermal stress and surviving the changing world. To investigate the relationship between the thermoregulatory strategy and habitat temperature, in the present study, we comparatively investigated the thermal responsive strategy among different geographic populations of the supralittoral snail Littoraria sinensis by determining snails' cardiac function and behavioral performance. Our results indicated that populations inhabiting high ambient temperatures had higher sublethal temperatures (i.e. Arrhenius breakpoint temperatures, ABTs, the temperature at which the heart rate shapely decreases with further heating) and lethal temperatures (i.e. Flatline temperatures, FLTs, the temperature at which heart rate ceases), and behaved less actively (e.g. shorter moving distances and shorter moving time) in the face of high and rising temperatures-a physiological fight strategy. On the other hand, populations at relatively low ambient temperatures had relatively lower physiological upper thermal limits with lower ABTs and FLTs and moved more actively in the face of high and rising temperatures-a behavioral flight strategy. These results demonstrate that the thermoregulatory strategies of the snails are closely related to their habitat temperatures and are different among populations surviving divergent thermal environments.

2.
Sci Total Environ ; 927: 172010, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575020

ABSTRACT

Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.


Subject(s)
Aquaculture , Bivalvia , Animals , China , Bivalvia/genetics , Bivalvia/physiology , Climate Change , Polymorphism, Single Nucleotide , Adaptation, Physiological/genetics
3.
Mar Environ Res ; 192: 106212, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37812948

ABSTRACT

Ignoring intraspecific variations can prevent us from accurately assessing species' thermal sensitivity to global warming. Individual-based physiological performance provides a feasible solution to depict species' thermal sensitivity using a bottom-up approach. We measured the cardiac performance of intertidal bivalves (1159 individuals from multiple populations of six bivalves), determined the upper thermal limit of each individual, calculated the proportions of individuals suffering sublethal/lethal heat stress, and mapped sensitive regions to high temperatures. Results showed that high inter-individual variations of physiological performance existed in levels of populations and species, and species' thermal sensitivity was positively related to the intraspecific variations of heat tolerance. This bottom-up approach scaled up from individual, population to species emphasizes the importance of individual-based physiology performance in assessing thermal sensitivity across different hierarchical levels and enables better evaluating and forecasting of species responses to global warming.


Subject(s)
Bivalvia , Thermotolerance , Humans , Animals , Global Warming , Heat-Shock Response , Temperature , Climate Change , Adaptation, Physiological/physiology
4.
Cell Stress Chaperones ; 28(5): 477-491, 2023 09.
Article in English | MEDLINE | ID: mdl-36094737

ABSTRACT

Harsh thermal environments in the rocky intertidal zone pose serious physiological and molecular challenges to the inhabitants. Metabolic depression is regarded as an energy-conserving feature of intertidal species. To understand the molecular mechanism of metabolic depression, we investigated physiological and transcriptomic responses in the intertidal snail Echinolittorina radiata. The metabolic rate and expression of most genes were insensitive to temperatures ranging from 33 to 45 °C and then increased with further heating to 52 °C. Different from other genes, the genes involved in heat shock response (HSR) and oxidative stress response (OSR) (e.g., genes encoding heat shock protein 70 (HSP70) and cytochrome P450 protein (CYP450)) kept upregulating during metabolic depression. These high levels of HSR and OSR genes should be important for surviving the harsh thermal environments on the rocky shore. In the population experiencing more frequent moderate heat events, the depression breadth was larger, and the change in magnitude of upregulation was insensitive for HSR genes (e.g., HSP70s) but heat-sensitive for OSR genes (e.g., CYP450s) at the temperature of 37 to 45 °C. These findings indicate that both the thermal sensitivity of HSR and OSR genes and the insensitivity of metabolic genes are crucial for surviving extreme intertidal environments, and different populations of the same species rely on various physiological mechanisms to differing extents to deal with heat stress. The cellular stress response is not a "one size fits all" response across populations largely depending on local thermal regimes.


Subject(s)
Depression , Snails , Animals , Snails/genetics , Snails/metabolism , Heat-Shock Response/genetics , Adaptation, Physiological/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Adaptation, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...