Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mol Psychiatry ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654124

ABSTRACT

Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.

2.
Heart Vessels ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635062

ABSTRACT

Effects of angiotensin receptor/neprilysin inhibitors (ARNI) on ventricular remodeling in patients with heart failure, especially heart failure with reduced ejection fraction (HFrEF), are better than those of angiotensin-converting enzyme inhibitors (ACEI). Acute myocardial infarction (AMI) complicated by mitral regurgitation exacerbates ventricular remodeling and increases the risk of heart failure. There is limited evidence on the effects of early administration of ARNI in patients with AMI complicated by mitral regurgitation. The aim of this trial was to examine the effectiveness and the safety of early administration of sacubitril/valsartan after coronary artery revascularization in patients with AMI complicated by moderate-to-severe mitral regurgitation. This was a randomized, single-blind, parallel-group, controlled trial. From June 2021 to June 2022, we enrolled 142 consecutive patients with AMI complicated by moderate-to-severe mitral regurgitation and followed them for 12 months. The patients received standard treatment for AMI and were randomly assigned to receive ARNI or benazepril. The primary efficacy end points were the differences in mitral regurgitant jet area (MRJA), mitral regurgitant volume (MRV), concentration of n-terminal pro-brain natriuretic peptide (NT-proBNP), left ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume and end-systolic volume (LVEDV and LVESV) between groups and within groups at baseline, 1, 3, 6, and 12 months. Secondary end points included the rates of heart failure hospitalization, all-cause mortality, refractory angina, malignant arrhythmias, recurrent myocardial infarction, and stroke. Safety end points included the rates of hyperkalemia, renal dysfunction, hypotension, angioedema, and cough. The ARNI group had significantly lower NT-proBNP levels than the benazepril group at 1 month and later (P < 0.001). MRJA and MRV significantly improved in the ARNI group compared with the benazepril group at 12 months (MRJA: - 3.21 ± 2.18 cm2 vs. - 1.83 ± 2.81 cm2, P < 0.05; MRV: - 27.22 ± 15.22 mL vs. - 13.67 ± 21.02 mL, P < 0.001). The ARNI group also showed significant reductions in LVEDV and LVESV (P < 0.05) and improvement in LVEF (P < 0.05). Secondary end point analysis showed a significantly higher rate of heart failure hospitalization in the benazepril group compared with the ARNI group (HR = 2.03, 95% CI 1.12-3.68, P = 0.021). Safety end point analysis showed a higher rate of hypotension in the ARNI group (P < 0.05). Early use of sacubitril/valsartan after coronary artery revascularization in patients with AMI complicated by moderate-to-severe mitral regurgitation can significantly reduce mitral regurgitation, improve ventricular remodeling, and decrease heart failure hospitalization. Nevertheless, caution is needed to avoid hypotension. Chinese Clinical Trial Registry (ChiCTR2100054255) registered on December 11, 2021.

3.
ACS Appl Mater Interfaces ; 16(1): 569-575, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38108825

ABSTRACT

The water flow energy of rivers is an important renewable and clean energy that plays a vital role in human life but is challenging to harvest at low flow velocity. This work proposes a bionic fish-shaped triboelectric-electromagnetic hybrid generator (BF-TEHG) via a two-stage swing mechanism for harvesting water flow energy. It is designed to simulate the shape of fish, effectively improving its ability to utilize low-velocity water flow energy and enabling it to operate at a minimum flow rate of 0.24 m/s. Furthermore, the impact of motion parameters on electrical performance is studied. The triboelectric and electromagnetic power-generation units can generate peak powers of 0.55 and 0.34 mW in the simulated river environments with a flow velocity of 0.98 m/s. In applications, after being immersed in water for 40 days, the BF-TEHG maintains its electrical performance without reduction, indicating excellent water immersion durability. Therefore, this work proposes an efficient strategy to harvest low-velocity water flow energy and provides an acceptable candidate for monitoring water flow conditions.

4.
Elife ; 122023 09 20.
Article in English | MEDLINE | ID: mdl-37728612

ABSTRACT

Billions of apoptotic cells are removed daily in a human adult by professional phagocytes (e.g. macrophages) and neighboring nonprofessional phagocytes (e.g. stromal cells). Despite being a type of professional phagocyte, neutrophils are thought to be excluded from apoptotic sites to avoid tissue inflammation. Here, we report a fundamental and unexpected role of neutrophils as the predominant phagocyte responsible for the clearance of apoptotic hepatic cells in the steady state. In contrast to the engulfment of dead cells by macrophages, neutrophils burrowed directly into apoptotic hepatocytes, a process we term perforocytosis, and ingested the effete cells from the inside. The depletion of neutrophils caused defective removal of apoptotic bodies, induced tissue injury in the mouse liver, and led to the generation of autoantibodies. Human autoimmune liver disease showed similar defects in the neutrophil-mediated clearance of apoptotic hepatic cells. Hence, neutrophils possess a specialized immunologically silent mechanism for the clearance of apoptotic hepatocytes through perforocytosis, and defects in this key housekeeping function of neutrophils contribute to the genesis of autoimmune liver disease.


Every day, the immune cells clears the remains of billions of old and damaged cells that have undergone a controlled form of death. Removing them quickly helps to prevent inflammation or the development of autoimmune diseases. While immune cells called neutrophils are generally tasked with removing invading bacteria, macrophages are thought to be responsible for clearing dead cells. However, in healthy tissue, the process occurs so efficiently that it can be difficult to confirm which cells are responsible. To take a closer look, Cao et al. focused on the liver by staining human samples to identify both immune and dead cells. Unexpectedly, there were large numbers of neutrophils visible inside dead liver cells. Further experiments in mice revealed that after entering the dead cells, neutrophils engulfed the contents and digested the dead cell from the inside out. This was a surprising finding because not only are neutrophils not usually associated with dead cells, but immune cells usually engulf cells and bacteria from the outside rather than burrowing inside them. The importance of this neutrophil behaviour was shown when Cao et al. studied samples from patients with an autoimmune disease where immune cells attack the liver. In this case, very few dead liver cells contained neutrophils, and the neutrophils themselves did not seem capable of removing the dead cells, leading to inflammation. This suggests that defective neutrophil function could be a key contributor to this autoimmune disease. The findings identify a new role for neutrophils in maintaining healthy functioning of the liver and reveal a new target in the treatment of autoimmune diseases. In the future, Cao et al. plan to explore whether compounds that enhance clearance of dead cells by neutrophils can be used to treat autoimmune liver disease in mouse models of the disease.


Subject(s)
Autoimmune Diseases , Neutrophils , Adult , Humans , Animals , Mice , Hepatocytes , Phagocytes , Macrophages , Autoantibodies
5.
Oncogene ; 42(41): 3062-3074, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634009

ABSTRACT

Gastric cancer (GC) is characterized by its vigorous chemoresistance to current therapies, which is attributed to the highly heterogeneous and immature phenotype of cancer stem cells (CSCs) during tumor initiation and progression. The secretory WNT2 ligand regulates multiple cancer pathways and has been demonstrated to be a potential therapeutic target for gastrointestinal tumors; however, its role involved in gastric CSCs (GCSCs) remains unclear. Here, we found that overexpression of WNT2 enhanced stemness properties to promote chemoresistance and tumorigenicity in GCSCs. Mechanistically, WNT2 was positively regulated by its transcription factor SOX4, and in turn, SOX4 was upregulated by the canonical WNT2/FZD8/ß-catenin signaling pathway to form an auto-regulatory positive feedback loop, resulting in the maintenance of GCSCs self-renewal and tumorigenicity. Furthermore, simultaneous overexpression of both WNT2 and SOX4 was correlated with poor survival and reduced responsiveness to chemotherapy in clinical GC specimens. Blocking WNT2 using a specific monoclonal antibody significantly disrupted the WNT2-SOX4 positive feedback loop in GCSCs and enhanced the chemotherapeutic efficacy when synergized with the chemo-drugs 5-fluorouracil and oxaliplatin in a GCSC-derived mouse xenograft model. Overall, this study identified a novel WNT2-SOX4 positive feedback loop as a mechanism for GCSCs-induced chemo-drugs resistance and suggested that the WNT2-SOX4 axis may be a potential therapeutic target for gastric cancer treatment.

6.
Cell Death Dis ; 14(8): 545, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612301

ABSTRACT

Gastric cancer (GC) is notoriously resistant to current therapies due to tumor heterogeneity. Cancer stem cells (CSCs) possess infinite self-renewal potential and contribute to the inherent heterogeneity of GC. Despite its crucial role in chemoresistance, the mechanism of stemness maintenance of gastric cancer stem cells (GCSCs) remains largely unknown. Here, we present evidence that lengsin, lens protein with glutamine synthetase domain (LGSN), a vital cell fate determinant, is overexpressed in GCSCs and is highly correlated with malignant progression and poor survival in GC patients. Ectopic overexpression of LGSN in GCSC-derived differentiated cells facilitated their dedifferentiation and treatment resistance by interacting with vimentin and inducing an epithelial-to-mesenchymal transition. Notably, genetic interference of LGSN effectively suppressed tumor formation by inhibiting GCSC stemness maintenance and provoking gasdermin-D-mediated pyroptosis through vimentin degradation/NLRP3 signaling. Depletion of LGSN combined with the chemo-drugs 5-fluorouracil and oxaliplatin could offer a unique and promising approach to synergistically rendering this deadly cancer eradicable in vivo. Our data place focus on the role of LGSN in GCSC regeneration and emphasize the critical importance of pyroptosis in battling GCSC.


Subject(s)
Pyroptosis , Stomach Neoplasms , Humans , Vimentin , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Neoplastic Stem Cells
7.
Cell Death Differ ; 30(10): 2351-2363, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37568009

ABSTRACT

Mitochondria are essential organelles found in eukaryotic cells that play a crucial role in ATP production through oxidative phosphorylation (OXPHOS). Mitochondrial DNA depletion syndrome (MTDPS) is a group of genetic disorders characterized by the reduction of mtDNA copy number, leading to deficiencies in OXPHOS and mitochondrial functions. Mutations in FBXL4, a substrate-binding adaptor of Cullin 1-RING ubiquitin ligase complex (CRL1), are associated with MTDPS, type 13 (MTDPS13). Here, we demonstrate that, FBXL4 directly interacts with the mitophagy cargo receptors BNIP3 and BNIP3L, promoting their degradation through the ubiquitin-proteasome pathway via the assembly of an active CRL1FBXL4 complex. However, MTDPS13-associated FBXL4 mutations impair the assembly of an active CRL1FBXL4 complex. This results in a notable accumulation of BNIP3/3L proteins and robust mitophagy even at basal levels. Excessive mitophagy was observed in Knockin (KI) mice carrying a patient-derived FBXL4 mutation and cortical neurons (CNs)-induced from MTDPS13 patient human induced pluripotent stem cells (hiPSCs). In summary, our findings suggest that abnormal activation of BNIP3/BNIP3L-dependent mitophagy impairs mitochondrial homeostasis and underlies FBXL4-mutated MTDPS13.

8.
J Tissue Eng ; 14: 20417314221147113, 2023.
Article in English | MEDLINE | ID: mdl-36636100

ABSTRACT

Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1ß. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.

9.
Acta Pharmacol Sin ; 44(6): 1277-1289, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36517670

ABSTRACT

Neoplastic cells of non-immunogenic pancreatic ductal adenocarcinoma (PDAC) express indoleamine 2,3-dioxygenase 1 (IDO-1), an immunosuppressive enzyme. The metabolites of IDO-1 in cancers provide one-carbon units that annihilate effector T cells, and recruit immunosuppressive cells. In this study we investigated how IDO-1 affected the neoplastic cell behaviors in PDACs. Using multiple markers co-labeling method in 45-µm-thick tissue sections, we showed that IDO-1 expression was uniquely increased in the neoplastic cells extruded from ducts' apical or basal domain, but decreased in lymph metastatic cells. IDO-1+ extruding neoplastic cells displayed increased vimentin expression and decreased cytokeratin expression in PDACs, characteristics of epithelial-mesenchymal transition (EMT). However, IDO-1 expression was uncorrelated with immunosuppressive infiltrates and clinicopathological characteristics of grim outcome. We replicated basal extrusion with EMT in murine KPIC PDAC organoids by long-term IFN-γ induction; application of IDO-1 inhibitor INCB24360 or 1-MT partially reversed basal extrusion coupled EMT. Ido-1 deletion in KPIC cells deprived its tumorigenicity in immunocompetent mice, decreased cellular proliferation and macropinocytic ability, and increased immunogenicity. KPIC organoids with IFN-γ-induced basal extrusion did not accelerate distant metastasis, whereas inhibition IFN-γ-induced IDO-1 with INB24360 but not 1-MT in KPIC organoids elicited liver metastasis of subcutaneous KPIC organoid tumors, suggesting that lower IDO-1 activity accelerated distant metastasis, whereas IDO-1 was indispensable for tumorigenicity of PDAC cells and supports the survival of extruding cells.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Immunologic Factors , Pancreatic Neoplasms
10.
Mol Psychiatry ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36414713

ABSTRACT

The growth cone guides the axon or dendrite of striatal GABAergic projection neurons that protrude into the midbrain and cortex and form complex neuronal circuits and synaptic networks in a developing brain, aberrant projections and synaptic connections in the striatum related to multiple brain disorders. Previously, we showed that ketamine, an anesthetic, reduced dendritic growth, dendritic branches, and spine density in human striatal GABAergic neurons. However, whether ketamine affects the growth cone, the synaptic connection of growing striatal GABAergic neurons has not been tested. Using human GABAergic projection neurons derived from human inducible pluripotent stem cells (hiPSCs) and embryonic stem cells (ES) in vitro, we tested ketamine effects on the growth cones and synapses in developing GABAergic neurons by assessing the morphometry and the glycogen synthase kinase-3 (GSK-3) and histone deacetylase 6 (HDAC6) pathway. Ketamine exposure impairs growth cone formation, synaptogenesis, dendritic development, and maturation via ketamine-mediated activation of GSK-3 pathways and inhibiting HDAC6, an essential stabilizing protein for dendritic morphogenesis and synapse maturation. Our findings identified a novel ketamine neurotoxic pathway that depends on GSK-3ß and HDAC6 signaling, suggesting that microtubule acetylation is a potential target for reducing ketamine's toxic effect on GABAergic projection neuronal development.

11.
PLoS Biol ; 20(11): e3001868, 2022 11.
Article in English | MEDLINE | ID: mdl-36395338

ABSTRACT

The striatum links neuronal circuits in the human brain, and its malfunction causes neuronal disorders such as Huntington's disease (HD). A human striatum model that recapitulates fetal striatal development is vital to decoding the pathogenesis of striatum-related neurological disorders and developing therapeutic strategies. Here, we developed a method to construct human striatal organoids (hStrOs) from human pluripotent stem cells (hPSCs), including hStrOs-derived assembloids. Our hStrOs partially replicated the fetal striatum and formed striosome and matrix-like compartments in vitro. Single-cell RNA sequencing revealed distinct striatal lineages in hStrOs, diverging from dorsal forebrain fate. Using hStrOs-derived assembloids, we replicated the striatal targeting projections from different brain parts. Furthermore, hStrOs can serve as hosts for striatal neuronal allografts to test allograft neuronal survival and functional integration. Our hStrOs are suitable for studying striatal development and related disorders, characterizing the neural circuitry between different brain regions, and testing therapeutic strategies.


Subject(s)
Organoids , Pluripotent Stem Cells , Humans , Corpus Striatum , Neostriatum , Prosencephalon
12.
Pak J Med Sci ; 38(1): 172-178, 2022.
Article in English | MEDLINE | ID: mdl-35035421

ABSTRACT

OBJECTIVES: To investigate the application of tirofiban in patients with acute myocardial infarction complicated with diabetes and undergoing emergency interventional therapy. METHODS: Two hundred patients with acute ST-segment elevation myocardial infarction (STEMI) complicated with diabetes who underwent percutaneous coronary intervention (PCI) and found to have high thrombus burden in coronary artery admitted to our hospital from September 2018 to September 2020 were selected as subjects, and were divided into two groups according to the randomization method: the intravenous tirofiban bolus group and the intracoronary tirofiban bolus group, with 100 cases in each group. The levels of LVEF, LVESD and LVEDD were detected immediately after admission and 15 days after therapy, and the enzyme-linked immunosorbent assay was utilized to detect the levels of CK-MB, MMP-9 and hs-CRP. Furthermore, the levels of BNP, TNI, CR and UREA of the patients were analyzed, and the levels of ESR and FIB were detected with an automatic blood rheology analyzer to analyze the TIMI classification and the incidence of MACE in the two groups. RESULTS: Significant differences were seen between the two groups in the levels of various indicators after therapy. Fifteen days after therapy, the levels of LVEF and LVEDD were higher and the level of LVESD was lower in the intracoronary tirofiban bolus group than in the intravenous tirofiban bolus group (p<0.05); 3d after therapy, the levels of CK-MB, MMP-9 and BNP in the intracoronary tirofiban bolus group were lower than those in the intravenous tirofiban bolus group (p<0.05); 3d after therapy, the levels of TNI (p<0.05), CR and UREA in the intracoronary tirofiban bolus group were lower than those in the intravenous tirofiban bolus group, with no statistical difference (p>0.05); Similarly, 3d after therapy, the levels of TNI, Cr and Urea, as well as ESR, FIB and hs-CRP were lower in the intracoronary tirofiban bolus group than in the intravenous tirofiban bolus group (p<0.05). Compared with the intravenous tirofiban bolus group, the intracoronary tirofiban bolus group had a lower number of patients with Grade-0 and Grade-1, but a higher number of patients with Grade-2 and Grade-3 (p<0.05); Moreover, the incidence of MACE in the intracoronary tirofiban bolus group was lower than that in the intravenous tirofiban bolus group (p<0.05). CONCLUSION: In patients with STEMI complicated with diabetes who underwent PCI and found to have high thrombus burden in coronary artery, intracoronary bolus of tirofiban boasts superior therapeutic efficacy over intravenous bolus of tirofiban in significantly improving cardiac function, reducing myocardial cell damage, and improving renal function and myocardial inflammation of patients.

13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(1): 7-14, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35048593

ABSTRACT

Gastrointestinal (GI) cancer, a common malignant tumor with a high incidence in China, is showing a trend of rising incidence and is afflicting increasingly younger patients. Meanwhile, there have been constant development and innovations in new therapeutic technologies, among which, immunotherapy is now leading in a new era in the treatment of GI cancer. However, the complexity and diversity of immunosuppressive tumor microenvironment (TME) bring many obstacles to the immunotherapy of solid tumors in the GI tract. In this paper, focusing on solid tumors in the GI tract, we reviewed the main factors affecting the formation of immunosuppressive TME, and summarized strategies for targeted immunosuppressive TME-based therapies. Moreover, we analyzed the synergistic mechanism of various combination immunotherapies and reported on the latest progress in and future direction of immunotherapy for GI cancer, intending to provide new perspectives for treating solid tumors in the GI tract with immumotherapy.


Subject(s)
Gastrointestinal Neoplasms , Neoplasms , China , Gastrointestinal Neoplasms/therapy , Humans , Immunotherapy , Tumor Microenvironment
14.
PLoS One ; 16(11): e0258204, 2021.
Article in English | MEDLINE | ID: mdl-34735466

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO-1) is an immunosuppressive enzyme expressed in the placenta, neoplastic cells, and macrophages to reject T cells by converting tryptophan into kynurenine. However, the role of IDO-1 in brain immunity, especially in the meninges, is unclear. We aim to elucidate the distribution pattern of IDO-1+ macrophages/microglia in the human brain tissues, human glioblastoma, APP/PS1 mouse brains, and quinolinic acid model brains and explore the physiological and immunological roles of IDO-1+ macrophages/microglia. Here, we find that both human and mouse macrophages/microglia of the perivascular and subarachnoid space and in glioblastoma (GBM) expressed IDO-1 but not macrophages/microglia of parenchyma. Using IDO-1 inhibitors including 1-MT and INCB24360, we observed that inhibiting IDO-1 reduced the cellular size and filopodia growth, fluid uptake, and the macropinocytic and phagocytic abilities of human blood monocytes and RAW264.7/BV-2 cells. Inhibiting IDO-1 with 1-MT or INCB24360 increased IL-1ß secretion and suppressed NLRP3 expression in RAW264.7/BV-2 cells. Our data collectively show that IDO-1 expression in perivascular and meninges macrophages/microglia increases cellular phagocytic capacity and might suppress overactivation of inflammatory reaction.


Subject(s)
Brain/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Macrophages/metabolism , Microglia/metabolism , Animals , Brain/immunology , Gene Expression Regulation/immunology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Interleukin-1beta/genetics , Macrophages/immunology , Mice , Microglia/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RAW 264.7 Cells , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
15.
Anal Chem ; 93(27): 9408-9417, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34197092

ABSTRACT

Protein synthesis and degradation responding to environmental cues is critical for understanding the mechanisms involved. Chemical proteomics introducing bioorthogonal tagging into proteins and isolation by biotin affinity purification is applicable for enrichment of newly synthesized proteins (NSPs). Current enrichment methods based on biotin-streptavidin interaction lack efficiency to release enriched NSPs under mild conditions. Here we designed a novel method for enriching newly synthesized peptides by click chemistry followed by release of enriched peptides via tryptic digestion based on cleavable bioorthogonal tagging (CBOT). CBOT-modified peptides can further enhance identification in mass spectrometry analysis and provide a confirmation by small mass shift. Our method achieved an improvement in specificity (97.1%) and sensitivity for NSPs in cell lysate, corresponding to profiling at a depth of 4335 NSPs from 2 mg of starting materials in a single LC-MS/MS run. In addition, the CBOT strategy can quantify NSPs when coupling a pair of isotope-labeled azidohomoalanine (AHA/hAHA) with decent reproducibility. Furthermore, we applied it to analyze newly synthesized proteomes in the autophagy process after 6 h rapamycin stimulation in cells, 2910 NSPs were quantified, and 337 NSPs among them were significantly up- and down-regulated. We envision CBOT as an effective and alternative approach for bioorthogonal chemical proteomics to study stimuli-sensitive subsets.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Proteome , Reproducibility of Results
16.
Front Med (Lausanne) ; 8: 728339, 2021.
Article in English | MEDLINE | ID: mdl-35059410

ABSTRACT

Objective: To investigate a new risk score for patients who suffered from acute chest pain with normal high-sensitivity troponin I (hs-TnI) levels. Methods: In this study, patients with acute chest pain who were admitted to the emergency department (ED) of our hospital had been recruited. Hs-TnI was measured in serum samples drawn on admission to the ED. The end point was the occurrence of major adverse cardiac events (MACE) within 3 months. Predictor variables were selected by logistic regression analysis, and external validity was assessed in this study. Furthermore, validation was performed in an independent cohort, i.e., 352 patients (validation cohort). Results: A total of 724 patients were included in the derivation cohort. The results showed that four predictor variables were significant in the regression analysis-male, a history of chest pain, 60 years of age or older and with three or more coronary artery disease (CAD) risk factors. A total of 105 patients in the validation cohort had serious adverse cardiac events. The validation cohort showed a homogenous pattern with the derivation cohort when patients were stratified by score. The area under the curve (AUC) of the receiver operating characteristic (ROC) in the derivation cohort was 0.80 (95% CI: 0.76-0.83), while in the validation cohort, it was 0.79 (95% CI: 0.75-0.82). Conclusion: A new risk score was developed for acute chest pain patients without known CAD and ST-segment deviation and with normal hs-TnI and may aid MACE risk assessment and patient triage in the ED.

17.
J Pathol ; 253(3): 304-314, 2021 03.
Article in English | MEDLINE | ID: mdl-33159698

ABSTRACT

Apical microvilli of polarized epithelial cells govern the absorption of metabolites and the transport of fluid in tissues. Previously, we reported that tall and dense basal microvilli present on the endothelial cells of pancreatic cancers, a lethal malignancy with a high metabolism and unusual hypomicrovascularity, contain nutrient trafficking vesicles and glucose; their length and density were related to the glucose uptake of pancreatic cancers in a small-scale analysis. However, the implications of basal microvilli on pancreatic cancers are unknown. Here, we evaluated the clinical implications of basal microvilli in 106 pancreatic cancers. We found that basal microvilli are a dominant change in pancreatic cancers. The presence of longer and denser basal microvilli on the microvessels in pancreatic cancer tissues positively correlated with increased glucose uptake and higher metastatic (or invasive) and proliferative potentials of neoplastic cells and vice versa. Clinically, postoperative patients with longer and denser basal microvilli were more prone to unfavorable pathological characteristics and dismal prognoses. They were even more refractory to adjuvant therapy than those with shorter and thinner basal microvilli were. Our findings show that basal microvilli define the metabolic capacity and lethal phenotype of pancreatic cancers. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Endothelium, Vascular/pathology , Microvilli/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Adult , Aged , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Microvessels/pathology , Microvilli/metabolism , Middle Aged , Pancreatic Neoplasms/blood supply , Phenotype , Positron Emission Tomography Computed Tomography/methods , Prognosis
18.
Cancer Med ; 9(15): 5535-5545, 2020 08.
Article in English | MEDLINE | ID: mdl-32488986

ABSTRACT

Pancreatic cancer (PC) is a highly lethal tumor with controversial high glucose uptake and hypomicrovascularity, and the hypomicrovasculature, which is considered to have poor perfusion, blocks the delivery of drugs to tumors. The preferential existence of a novel endothelial projection with trafficking vesicles in PCs, referring to basal microvilli, was described previously. However, the perfusion and nutrients delivering status of the basal microvilli microvessels are unknown. Here, we used the perfusion of fluorescently labeled CD31 antibody, lectin, and 2-NBDG to autochthonous PC-bearing mice, immunostaining, probe-based confocal laser endoscopy and three-dimensional (3D) reconstruction to study the nutrient trafficking, and perfusion status of the basal microvilli microvasculature in PC. Our data showed that the coperfusion of lectin and CD31 is an efficient way to show the microcirculation in most healthy organs. However, coperfusion with lectin and CD31 is inefficient for showing the microcirculation in PCs compared with that in healthy organs and immunostaining. This method does not reflect the nutrient trafficking status in the microvessels, especially in basal microvilli microvessels of PCs. In basal microvilli microvessels that were poorly labeled by lectin, we observed large vesicle-like structures with 2-NBDG preferentially located at the base of the basal microvilli or in basal microvilli, and there were long filopodia on the luminal surface of the human PC microvasculature. Our observations suggest that the PC microvasculature, especially basal microvilli microvessels, is well perfused and might be highly efficient in the trafficking of glucose or other nutrients, indicating that macropinocytosis might participate in the nutrient trafficking.


Subject(s)
Microvessels/pathology , Microvilli/physiology , Pancreatic Neoplasms/physiopathology , Animals , Humans , Male , Mice
19.
Neurosci Bull ; 36(12): 1414-1428, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32500377

ABSTRACT

Expansions of trinucleotide or hexanucleotide repeats lead to several neurodegenerative disorders, including Huntington disease [caused by expanded CAG repeats (CAGr) in the HTT gene], and amyotrophic lateral sclerosis [ALS, possibly caused by expanded GGGGCC repeats (G4C2r) in the C9ORF72 gene], of which the molecular mechanisms remain unclear. Here, we demonstrated that lowering the Drosophila homologue of tau protein (dtau) significantly rescued in vivo neurodegeneration, motor performance impairments, and the shortened life-span in Drosophila expressing expanded CAGr or expanded G4C2r. Expression of human tau (htau4R) restored the disease-related phenotypes that had been mitigated by the loss of dtau, suggesting an evolutionarily-conserved role of tau in neurodegeneration. We further revealed that G4C2r expression increased tau accumulation by inhibiting autophagosome-lysosome fusion, possibly due to lowering the level of BAG3, a regulator of autophagy and tau. Taken together, our results reveal a novel mechanism by which expanded G4C2r causes neurodegeneration via an evolutionarily-conserved mechanism. Our findings provide novel autophagy-related mechanistic insights into C9ORF72-ALS and possible entry points to disease treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Autophagy , DNA Repeat Expansion , Frontotemporal Dementia , tau Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amyotrophic Lateral Sclerosis/genetics , Animals , Apoptosis Regulatory Proteins , C9orf72 Protein/genetics , Disease Models, Animal , Drosophila/metabolism , Frontotemporal Dementia/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...