Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Microb Pathog ; 188: 106570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341108

ABSTRACT

High-concentrate diet induce subacute ruminal acidosis (SARA) and cause liver damage in ruminants. It has been reported that forkhead box protein A2 (FOXA2) can enhance mitochondrial membrane potential but its function in mitochondrial dysfunction induced by high concentrate diets is still unknown. Therefore, the aim of this study was to elucidate the effect of high-concentrate (HC) diet on hepatic FOXA2 expression, mitochondrial unfolded protein response (UPRmt), mitochondrial dysfunction and oxidative stress. A total of 12 healthy mid-lactation Holstein cows were selected and randomized into 2 groups: the low concentrate (LC) diet group (concentrate:forage = 4:6) and HC diet group (concentrate:forage = 6:4). The trial lasted 21 d. The rumen fluid, blood and liver tissue were collected at the end of the experiment. The results showed that the rumen fluid pH level was reduced in the HC group and the pH was lower than 5.6 for more than 4 h/d, indicating that feeding HC diets successfully induced SARA in dairy cows. Both FOXA2 mRNA and protein abundance were significantly reduced in the liver of the HC group compared with the LC group. The activity of antioxidant enzymes (CAT, G6PDH, T-SOD, Cu/Zn SOD, Mn SOD) and mtDNA copy number in the liver tissue of the HC group decreased, while the level of H2O2 significantly increased, this increase was accompanied by a decrease in oxidative phosphorylation (OXPHOS). The balance of mitochondrial division and fusion was disrupted in the HC group, as evidenced by the decreased mRNA level of OPA1, MFN1, and MFN2 and increased mRNA level of Drp1, Fis1, and MFF. At the same time, HC diet downregulated the expression level of SIRT1, SIRT3, PGC-1α, TFAM, and Nrf 1 to inhibit mitochondrial biogenesis. The HC group induced UPRmt in liver tissue by upregulating the mRNA and protein levels of CLPP, LONP1, CHOP, Hsp10, and Hsp60. In addition, HC diet could increase the protein abundance of Bax, CytoC, Caspase 3 and Cleaved-Caspase 3, while decrease the protein abundance of Bcl-2 and the Bcl-2/Bax ratio. Overall, our study suggests that the decreased expression of FOXA2 may be related to UPRmt, mitochondrial dysfunction, oxidative stress, and apoptosis in the liver of dairy cows fed a high concentrate diet.


Subject(s)
Hydrogen Peroxide , Mitochondrial Diseases , Animals , Female , Cattle , Caspase 3/metabolism , Hydrogen Peroxide/metabolism , bcl-2-Associated X Protein/metabolism , Diet/veterinary , Liver/metabolism , Lactation , Oxidative Stress , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism , Unfolded Protein Response , Mitochondrial Diseases/metabolism , Forkhead Transcription Factors/metabolism , Milk/metabolism , Hydrogen-Ion Concentration , Animal Feed
2.
Org Lett ; 25(10): 1771-1775, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36862539

ABSTRACT

A straightforward cross-coupling of aryl thioether with aryl bromide with the aid of nickel salt, magnesium, and lithium chloride in tetrahydrofuran at ambient temperature was accomplished. The one-pot reactions proceeded efficiently via C-S bond cleavage to produce the desired biaryls in modest to good yields, avoiding the use of pregenerated or commercial organometallic reagents.

3.
Protoplasma ; 260(2): 625-635, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35947214

ABSTRACT

Ascorbic acid (AsA) plays an important role in scavenging reactive oxygen species (ROS) and reducing photoinhibition in plants, especially under stress. The function of SlGGP which encodes the key enzyme GDP-L-galactose phosphorylase in AsA synthetic pathway is relatively clear. However, there is another gene SlGGP-LIKE that encodes this enzyme in tomato, and there are few studies on it, especially under salt stress. In this study, we explored the function of this gene in tomato salt stress response using transgenic lines overexpressing SlGGP-LIKE (OE). Under normal conditions, overexpressing SlGGP-LIKE can increase the content of reduced AsA and the ratio of AsA/ DHA (dehydroascorbic acid), as well as the level of xanthophyll cycle. Under salt stress, compared with the wild-type plants (WT), the OE lines can maintain higher levels of reduced AsA. In addition, OE lines also have higher levels of reduced GSH (glutathione) and total GSH, higher ratios of AsA/DHA and GSH/oxidative GSH (GSSR), and higher level of xanthophyll cycle. Therefore, the OE lines are more tolerant to salt stress, with higher photosynthetic activity, higher antioxidative enzyme activities, higher content of D1 protein, lower production rate of ROS, and lighter membrane damage. These results indicate that overexpressing SlGGP-LIKE can enhance tomato resistance to salt stress through promoting the synthesis of AsA.


Subject(s)
Solanum lycopersicum , Reactive Oxygen Species/metabolism , Solanum lycopersicum/genetics , Plants, Genetically Modified/genetics , Ascorbic Acid/metabolism , Salt Stress , Xanthophylls
4.
Org Lett ; 24(10): 1953-1957, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35244408

ABSTRACT

The direct cross-couplings of aryl sulfonium salts with aryl halides could be achieved by using nickel as a reaction catalyst. The reactions proceeded efficiently via C-S bond activation in the presence of magnesium turnings and lithium chloride in THF at ambient temperature to afford the corresponding biaryls in moderate to good yields, potentially serving as an attractive alternative to conventional cross-coupling reactions employing preprepared organometallic reagents.

5.
Chem Commun (Camb) ; 56(94): 14817-14820, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33150885

ABSTRACT

Two isostructural MOFs with coordination of different halogen ions (Cl- and Br-), namely NNU-17 and NNU-18, were utilized to reveal the influence of different electron-withdrawing halogen anions on ECR performance. The performance difference between them mainly originates from the different abilities of adsorption and activation of CO2 by halogen ions.

6.
Dalton Trans ; 48(35): 13242-13247, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31414094

ABSTRACT

Five examples of bis(pyrazolyl)borate Ni(ii) complexes 2-5, exhibiting C-HNi interactions, were readily prepared from the reactions of K[BBN(3-R1-4-R2-pz)2] with Ni(ii) precursors (Ni(acac)2 or NiCl2(PPh3)2) in dichloromethane or toluene. When R1 = R2 = H, complex 2a with square-planar geometry around the Ni centre and showing an unusual C-HNi anagostic interaction was obtained. In contrast, when R1 = Me, R2 = H or R1 = Me, R2 = Br, tetrahedral complexes 3 or 4 were formed preferentially with strong C-HNi agostic interactions, respectively. Additionally, some differences in the formation and transformation of 3 and 4 were also found including a 1,2-borotropic shift during the formation of 3 and a further geometrical transformation from tetrahedral 3 to square-planar 2b by the second 1,2-borotropic shift under continuous heating; in contrast, no ligand change and further conversion were found in 4. When the more hindered 3-iPr-substituted ligand 1d was introduced in the reaction, the hydrolysis and cleavage of one B-N bond in the ligand occurred, leading to the singly hydroxo-bridged complex 5. The experimental and theoretical results indicate that the preference to form a thermodynamically stable complex and then balancing with orbital energy should be the intrinsic reason for the reaction selectivity.

7.
Plant Cell Rep ; 36(4): 529-542, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28155114

ABSTRACT

KEY MESSAGE: Over-expression of SlJA2 decreased the accumulation of SA, which resulted in significant physiological and gene expression changes in transgenic tobacco plants, leading to the decreased heat tolerance of transgenic tobacco. NAC family, the largest transcription factors in plants, responses to different environmental stimuli. Here, we isolated a typical NAC transcription factor (SlJA2) from tomato and got transgenic tobacco with SlJA2 over-expression. Expression of SlJA2 was induced by heat stress (42 °C), chilling stress (4 °C), drought stress, osmotic stress, abscisic acid, and salicylic acid. Over-expression of SlJA2 decreased the accumulation of salicylic acid by regulating expression of salicylic acid degradation gene under heat stress. Compared to WT plants, stomatal apertures and water loss increased in transgenic plants, and the damage of photosynthetic apparatus and chlorophyll breakdown were more serious in transgenic plants under heat stress. Meanwhile, more H2O2 and O2·- were accumulated transgenic plants and proline synthesis was restricted, which resulted in more serious oxidative damage compared to WT. qRT-PCR analysis showed that over-expression of SlJA2 could down-regulate genes involved in reactive oxygen species scavenging, proline biosynthesis, and response to heat stress. All the above results indicated that SlJA2 may be a negative regulator responded to plant's heat tolerance. Thus, this study provides new insight into roles of NAC family member in plant response to abiotic stress.


Subject(s)
Gene Expression , Nicotiana/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Signal Transduction/genetics , Stress, Physiological/genetics , Thermotolerance/genetics , Droughts , Gene Expression/drug effects , Gene Expression/genetics , Hydrogen Peroxide/metabolism , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/pharmacology , Signal Transduction/drug effects , Stress, Physiological/drug effects , Nicotiana/drug effects , Nicotiana/genetics
8.
Plant Physiol Biochem ; 112: 218-226, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28092850

ABSTRACT

Plants are always exposed to abiotic and biotic stresses which can adversely affect their growth and development. As an important antioxidant, AsA plays a vital role in plant defence against damage caused by stresses. In this study, we cloned a tomato GDP-L-galactose phosphorylase-like (SlGGP-LIKE) gene and investigated its role in resistance to abiotic and biotic stresses by using antisense transgenic (AS) tomato lines. The AsA content in AS plants was lower than that in WT plants. Under chilling stress, the growth of AS plants was inhibited significantly, and they yielded higher levels of ROS, REC and MDA but demonstrated weaker APX activity than that shown by WT plants. Additionally, the declined values of Pn, Fv/Fm, oxidisable P700, and D1 protein content of PSII in AS lines were significant. Furthermore, the effect on xanthophyll cycle of AS plants was more severe than that on WT plants, and the ratio of zeaxanthin (Z)/(V + A + Z) and (Z + 0.5 A)/(V + A + Z) in AS lines was lower than that in WT plants. In spite of chilling stress, under Pseudomonas syringae pv.tomato (Pst) DC3000 strain infection, AS plants showed lesser bacterial cell growth and dead cells than those shown by WT plants. This finding indicated that AS plants demonstrated stronger resistance against pathogenic infection. Results suggest that SlGGP-LIKE gene played an important role in plant defence against chilling stress and pathogenic infection.


Subject(s)
Cold Temperature , Genes, Plant , Plant Proteins/genetics , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Stress, Physiological/genetics , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Blotting, Western , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Photosynthesis , Pigments, Biological/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Pseudomonas/physiology , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
9.
J Integr Plant Biol ; 59(2): 102-117, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27995772

ABSTRACT

SUMOylation is an important post-translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS-type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene (SlSIZ1) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up-regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H2 O2 ) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1-2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress.


Subject(s)
Adaptation, Physiological , Droughts , Nicotiana/genetics , Nicotiana/physiology , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Ubiquitin-Protein Ligases/metabolism , Abscisic Acid/pharmacology , Adaptation, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Computational Biology , Genetic Complementation Test , Germination/drug effects , Heat-Shock Response/drug effects , Solanum lycopersicum/drug effects , Mutation/genetics , Phenotype , Plants, Genetically Modified , Protein Transport/drug effects , Reactive Oxygen Species/metabolism , Seedlings/drug effects , Seedlings/growth & development , Signal Transduction/drug effects , Small Ubiquitin-Related Modifier Proteins/metabolism , Stress, Physiological/drug effects
10.
J Plant Physiol ; 209: 31-41, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28012364

ABSTRACT

Ascorbate (AsA) is very important in scavenging reactive oxygen species in plants. AsA can reduce photoinhibition by xanthophyll cycle to dissipate excess excitation energy. GGP is an important enzyme in AsA biosynthesis pathway in higher plants. In this study, we cloned a gene, SlGGP-LIKE, that has the same function but different sequence compared with SlGGP. The function of SlGGP-LIKE gene in response to oxidative stress was investigated using transgenic tobacco plants overexpressed SlGGP-LIKE under methyl viologen treatment. After oxidative stress treatment, transgenic tobacco lines exhibited higher levels of reduced AsA content and APX activity than WT plants. Under oxidative stress, transgenic tobacco plants accumulated less ROS and exhibited lower degrees of REC and MDA. Consequently, relatively higher levels of Pn, Fv/Fm, de-epoxidation status of xanthophyll cycle and D1 protein were maintained in transgenic tobacco plants. Hence, overexpression of SlGGP-LIKE gene enhances AsA biosynthesis and can alleviate the photoinhibition of PSII under oxidative stress.


Subject(s)
Adaptation, Physiological/genetics , Genes, Plant , Nicotiana/physiology , Oxidative Stress/drug effects , Paraquat/toxicity , Solanum lycopersicum/genetics , Amino Acid Sequence , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Light , Malondialdehyde/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Transport/drug effects , Sequence Alignment , Subcellular Fractions/metabolism , Superoxides/metabolism , Nicotiana/drug effects , Nicotiana/genetics , Nicotiana/radiation effects , Xanthophylls/metabolism , Zeaxanthins/metabolism
11.
J Plant Physiol ; 204: 54-65, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27518221

ABSTRACT

The NAC proteins are the largest transcription factors in plants. The functions of NACs are various and we focus on their roles in response to abiotic stress here. In our study, a typical NAC gene (SlNAM1) is isolated from tomato and its product is located in the nucleus. It also has a transcriptional activity region situated in C-terminal. The expression levels of SlNAM1 in tomato were induced by 4°C, PEG, NaCl, abscisic acid (ABA) and methyl jasmonate (MeJA) treatments. The function of SlNAM1 in response to chilling stress has been investigated. SlNAM1 overexpression in tobacco exhibited higher germination rates, minor wilting, and higher photosynthetic rates (Pn) under chilling stress. Meanwhile, overexpression of SlNAM1 improved the osmolytes contents and reduced the H2O2 and O2•- contents under low temperature, which contribute to alleviating the oxidative damage of cell membrane after chilling stress. Moreover, the transcripts of NtDREB1, NtP5CS, and NtERD10s were higher in transgenic tobacco, and those increased expressions may confer higher chilling tolerance of transgenic plants. These results indicated that overexpression of SlNAM1 could improve chilling stress tolerance of transgenic tobacco.


Subject(s)
Adaptation, Physiological , Cold Temperature , Nicotiana/physiology , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Stress, Physiological , Transcription Factors/metabolism , Amino Acid Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oxidative Stress , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Subcellular Fractions/metabolism , Superoxides/metabolism , Nicotiana/genetics , Nicotiana/growth & development , Transcription Factors/chemistry , Transcriptional Activation/genetics , Up-Regulation/genetics
12.
Zhongguo Zhong Yao Za Zhi ; 40(11): 2221-6, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26552185

ABSTRACT

To study the toxicokinetics of bakuchiol, hepatic and renal toxicity in rats after single oral administration of Psoraleae Fructus and combined with Glycyrrhizae Radix et Rhizoma, in order to provide scientific evidences for clinical safe medication use. A total of 35 SD rats were randomly divided into seven groups: vehicle (distilled water) control group, Glycyrrhizae Radix et Rhizoma group, positive control (aristolochic acid A) group, Psoraleae Fructus (40 g x kg(-1)) group( both male and female rats), Psoraleae Fructus and Glycyrrhizae Radix et Rhizoma (40 +20) g x kg(-1) group (both male and female rats). HPLC-UV method was used to determine the concentration of bakuchiol in rat plasma at different time points after single oral administration. Plasma alanine transaminase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), plasma creatinine (Cr), N-acetyl-ß-D-glucosaminidase (NAG) and kidney injury molecule 1 (Kim-1) were measured after administration for 24 h. The main toxicokinetics parameters of bakuchiol in rats exert significantly gender difference. When Psoraleae Fructus combination with Glycyrrhizae Radix et Rhizoma, the total area under the plasma concentration-time curve( AUC), C(max), and plasma clearance (CL) of bakuchiol were increased, respectively; CL, half-life (t½) were decreased, and T(max) were prolonged. The biochemical indicators (including ALT, AST, BUN, Cr and KIM-1 level) in different dose of Psoraleae Fructus groups, were found no statistically significant difference when compared with vehicle control group. The level of NAG in both Psoraleae Fructus and compatibility with Glycyrrhizae Radix et Rhizoma groups were significant increased (P < 0.05). There are obvious effects on toxicokinetics of bakuchiol in rats when Psoraleae Fructus combined with Glycyrrhizae Radix et Rhizoma. Renal toxicity induced by Psoraleae Fructus at high dose was observed after single oral administration and no liver damage in rats was found.


Subject(s)
Glycyrrhiza/toxicity , Kidney/drug effects , Liver/drug effects , Phenols/toxicity , Psoralea/toxicity , Administration, Oral , Animals , Female , Male , Phenols/pharmacokinetics , Rats , Rats, Sprague-Dawley , Rhizome/toxicity , Toxicokinetics
13.
Chem Commun (Camb) ; 51(83): 15253-6, 2015 Oct 25.
Article in English | MEDLINE | ID: mdl-26376755

ABSTRACT

A mono-adenine-functionalized pillar[5]arene and a guest including uracil were prepared. They formed a novel four-unit [c2]daisy chain both in the solid state and in a chloroform solution. As far as we know, this [c2]daisy chain is the first one without a covalently bound linear thread. This unique assembly behavior is mainly induced by hydrogen-bond interactions between A and U in the A-U base pairs.

14.
Dalton Trans ; 44(21): 10078-88, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25948375

ABSTRACT

The electron donor-acceptor complexes, which undergo intramolecular charge transfer under external stimulus, are an emerging class of materials showing important application in nonlinear optics. Synthesizing ferrocene/fullerene complexes through face-to-face fusion would enjoy the merits of both ferrocene and fullerene due to their strong donor-acceptor interactions. Four ferrocene/fullerene hybrid complexes with the gradual extension of fullerene cage size, including CpFe(C60H5), CpFe(C66H5), CpFe(C70H5), and CpFe(C80H5) (Cp is cyclopentadienyl), have been investigated by density functional theory. These hybrid molecules give eclipsed and staggered isomers. The main reason that the eclipsed isomer is stable is that the eclipsed structure possesses large CpFefullerene bonding energy. The CpFefullerene interaction is smaller than that of CpFefullerene, which must come from two different interfaces. The presence of covalent bond character between CpFe and fullerene is supported by the localized orbital locator, deformation of electron density distribution and energy decomposition analysis. Significantly, the absorption bands and first hyperpolarizabilities of these hybrid complexes are strongly sensitive to the fullerene cage size, which is ascribed to a change in the charge transfer pattern, especially for CpFe(C80H5), which displays reverse π → π* charge transfer from bottom to top cage, leading to notable hyperpolarizability. Investigation of the structure-property relationship at the molecular level can benefit the design and preparation of such hybrid complexes in chemistry and materials science.


Subject(s)
Ferrous Compounds/chemistry , Fullerenes/chemistry , Metallocenes , Models, Chemical , Optical Rotation
15.
J Mol Graph Model ; 55: 33-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25424657

ABSTRACT

Hexathiophenalenylium (HTPLY) has gained increasing attention for its interesting and potentially useful optical properties as a result of the enhancement in spin delocalization and charge-transfer of phenalenyl radicals, occasioned by the attachment of successive three disulfide linkages. Herein, we performed density functional theory to calculate the binding interactions, electronic absorption spectra and the second hyperpolarizabilities of cation and radical dimers of HTPLY and its nitro derivatives. It is found that the equilibrium structures of the π dimers at fully staggered position are most stable. Among these π dimers, radical dimers exhibit stronger binding interactions with respect to cation dimers. In addition, obvious red shifts in electronic spectra of radical dimers are dependent on the large interlayer charge-transfers. More importantly, radical dimers [4]dim3 and [5]dim1 exhibit a significant increase in the second hyperpolarizabilities as compared to cation dimers, which is due to lower excitation energies and larger interlayer charge-transfers. We believe that the results presented in this article shall provide important evidence for the large interlayer charge-transfers in enhancing the NLO properties of the π dimers.


Subject(s)
Dimerization , Disulfides/chemistry , Electrons , Phenalenes/chemistry , Thiophenes/chemistry , Cations , Molecular Conformation , Thermodynamics
16.
Phys Chem Chem Phys ; 16(33): 18017-22, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25050910

ABSTRACT

Density functional theory (DFT) calculations and natural bond orbital (NBO) analysis were carried out to investigate the electronic structures and bonding features between the ruthenium(ii) atom and the SO2 molecule in two ruthenium-sulfur dioxide (SO2) adducts, trans-Ru(NH3)4(SO2)Cl(+) and [{SiW11O39}Ru(II)(SO2)](6-). In addition, the bonding interactions between SO2 and the metal-ruthenium fragment were determined by binding energy (ΔEabs) calculation and electronic structures. The results indicate that the η(1)-S-planar model in both trans-Ru(NH3)4(SO2)Cl(+) and [{SiW11O39}Ru(II)(SO2)](6-) are more favorable. NBO analysis of the bonding interaction between ruthenium and sulfur centers in the [{SiW11O39}Ru(II)(SO2)](6-) complex shows that it possesses a σ and a π bond. It predicts that the polyoxometalate [SiW11O39Ru](6-) can serve as a potential adsorbent for the SO2 molecule because of the strong Ru-S bond relative to Ru(NH3)4Cl(+).

17.
Phys Chem Chem Phys ; 16(10): 4900-10, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24472893

ABSTRACT

The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.

18.
Dalton Trans ; 43(13): 5069-75, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24413566

ABSTRACT

The rotary motion based on metallacarboranes around a molecular axis can be controlled by simple electron transfer processes, which provides a basis for the structure-property relationship for the nonlinear optical (NLO) switching. However, this phenomenon has not been previously reported in the development of NLO properties of metallacarboranes. In this work, the metallacarboranes [Ni(III/IV)(C2B9H11)2](-/0) and their C-,B-functionalized derivatives are studied by the density functional theory (DFT) method. By calculating relative energies, we obtained the stable states before and after rotation controlled by simple electron transfer. Then, the static and frequency-dependent second-order NLO properties were calculated by several DFT functionals. According to the TDDFT results, the large NLO responses of the studied compounds are mainly caused by substituent group-to-carborane cage charge transfer (L'LCT) and substituent group-to-metal charge transfer (L'MCT) processes. The order of first hyperpolarizabilities (ß values) illustrates that the NLO response can be enhanced by introducing a strong electron-donating group. Significantly, the geometric interconversions resulting from the redox reaction of 1C/1T-6C/6T allow the NLO responses to be switched "ON" or "OFF". The B(9,9')-methoxyphenyl-functionalized derivative of nickelacarborane, having low energetic cost and large different NLO responses between two states (from 0 to 20 998 a.u.), can be an excellent switchable NLO material.

19.
Plant Cell Rep ; 33(1): 131-42, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24129846

ABSTRACT

KEY MESSAGE: Transgenic tomato plants overexpressing LeFAD3 sense and antisense sequences were generated. Salt stress suppressed the growth of WT and antisense plants to a higher extent than that in sense plants. In this study, we investigated the role of the LeFAD3-encoding ER-type omega-3 fatty acid desaturase in salt tolerance in tomato plants. We created transgenic tomato plants by overexpressing its sense and antisense sequences under the control of the cauliflower mosaic virus 35S promoter. Based on the results of northern and western blotting as well as quantitative reverse transcription-polymerase chain reaction, sense plants expressed more desaturase than wild-type (WT) plants, whereas antisense plants expressed less desaturase than WT. Salt stress suppressed the growth of both WT and antisense plants to a higher extent than that in sense plants, which can be attributed to the fact that sense plants performed better in maintaining the integrity of the membrane system, as revealed by electron microscopy. The concomitant increase in superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.7) may have alleviated the photoinhibition caused by the increased level of ROS in sense plants. Our results suggest that LeFAD3 overexpression can enhance the tolerance of early seedlings to salinity stress.


Subject(s)
Endoplasmic Reticulum/enzymology , Fatty Acid Desaturases/metabolism , Salinity , Salt Tolerance , Seedlings/enzymology , Solanum lycopersicum/enzymology , Solanum lycopersicum/physiology , Ascorbate Peroxidases/metabolism , Electric Conductivity , Endoplasmic Reticulum/drug effects , Fatty Acid Desaturases/genetics , Fatty Acids/metabolism , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/drug effects , Solanum lycopersicum/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plants, Genetically Modified , Salt Tolerance/drug effects , Salt Tolerance/genetics , Seedlings/drug effects , Seedlings/physiology , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/genetics , Superoxide Dismutase/metabolism
20.
J Mol Graph Model ; 48: 28-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24366003

ABSTRACT

The unusual properties of Li-doped boron nitride nanomaterials have been paid further attention due to their wide applications in many promising fields. Here, density functional theory (DFT) calculations have been carried out to investigate the second-order nonlinear optical (NLO) properties of boron nitride nanocone (BNNC) and its Li-doped BNNC derivatives. The natural bond orbital charge, electron location function, localized orbital locator and frontier molecular orbital analysis offer further insights into the electron density of the Li-doped BNNC derivatives. The electron density is effectively bounded by the Li atom and its neighboring B atoms. The Li-doped BNNC molecules exhibit large static first hyperpolarizabilities (ß(tot)) up to 1.19×10³ a.u. for Li@2N-BNNC, 5.05×10³ a.u. for Li@2B-BNNC, and 1.08×10³ a.u. for Li@BN-BNNC, which are significantly larger than that of the non-doped BNNC (1.07×10² a.u.). The further investigations show that there are clearly dependencies of the first hyperpolarizabilities on the transition energies and oscillator strengths. Moreover, time-dependent DFT results show that the charge transfer from BNNC to Li atom becomes more pronounced as doping the Li atom to BNNC. It is also found that the frequency-dependent effect on the first hyperpolarizabilities is weak, which may be beneficial to experimentalists for designing Li-doped BNNC molecules with large NLO responses.


Subject(s)
Boron Compounds/chemistry , Lithium/chemistry , Computer Simulation , Coordination Complexes/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation , Quantum Theory , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...