Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
Front Pharmacol ; 15: 1281095, 2024.
Article in English | MEDLINE | ID: mdl-39011501

ABSTRACT

Background and Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a considerable health risk. Nevertheless, its risk factors are not thoroughly comprehended, and the association between the reticulocyte count and MASLD remains uncertain. This study aimed to explore the relationship between reticulocyte count and MASLD. Methods: A total of 310,091 individuals from the UK Biobank were included in this cross-sectional study, and 7,316 individuals were included in this prospective study. The cross-sectional analysis categorized reticulocyte count into quartiles, considering the sample distribution. Logistic regression models examined the connection between reticulocyte count and MASLD. In the prospective analysis, Cox analysis was utilized to investigate the association. Results: Our study findings indicate a significant association between higher reticulocyte count and an elevated risk of MASLD in both the cross-sectional and prospective analyses. In the cross-sectional analysis, the adjusted odds ratios (ORs) of MASLD increased stepwise over reticulocyte count quartiles (quartile 2: OR 1.22, 95% CI 1.17-1.28, p < 0.001; quartile 3: OR 1.44; 95% CI 1.38-1.51, p < 0.001; quartile 4: OR 1.66, 95% CI 1.59-1.74, p < 0.001). The results of prospective analyses were similar. Conclusion: Increased reticulocyte count was independently associated with a higher risk of MASLD. This discovery offers new insights into the potential of reticulocytes as biomarkers for MASLD.

2.
World J Clin Cases ; 12(19): 3807-3814, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994320

ABSTRACT

BACKGROUND: Patients in neurology intensive care units (ICU) are prone to pressure injuries (PU) due to factors such as severe illness, long-term bed rest, and physiological dysfunction. PU not only causes pain and complications to patients, but also increases medical burden, prolongs hospitalization time, and affects the recovery process. AIM: To evaluate and optimize the effectiveness of pressure injury prevention nursing measures in neurology ICU patients. METHODS: A retrospective study was conducted, and 60 patients who were admitted to the ICU of the Department of Neurology were selected and divided into an observation group and a control group according to the order of admission, with 30 people in each group. The observation group implemented pressure injury prevention and nursing measures, while the control group adopted routine care. RESULTS: Comparison between observation and control groups following pressure injury prevention nursing intervention revealed significantly lower incidence rates in the observation group compared to the control group at 48 h (8.3% vs 26.7%), 7 d (16.7% vs 43.3%), and 14 d (20.0% vs 50.0%). This suggests a substantial reduction in pressure injury incidence in the observation group, with the gap widening over time. Additionally, patients in the observation group exhibited quicker recovery, with a shorter average time to get out of bed (48 h vs 72 h) and a shorter average length of stay (12 d vs 15 d) compared to the control group. Furthermore, post-intervention, patients in the observation group reported significantly improved quality of life scores, including higher scores in body satisfaction, feeling and function, and comfort (both psychological and physiological), indicating enhanced overall well-being and comfort following the implementation of pressure injury prevention nursing measures. CONCLUSION: Implementing pressure injury preventive care measures for neurology ICU patients will have better results.

3.
EMBO J ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965418

ABSTRACT

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.

4.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864891

ABSTRACT

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Subject(s)
Phosphorus , Starch , Transcriptome , Zea mays , Zea mays/genetics , Zea mays/metabolism , Starch/metabolism , Phosphorus/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Quantitative Trait Loci , Phenotype
5.
Theor Appl Genet ; 137(7): 172, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935162

ABSTRACT

Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.


Subject(s)
Phenotype , Phosphorus , Seedlings , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/growth & development , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological/genetics , Phosphorus/metabolism , Genes, Plant , Genome-Wide Association Study , Chlorophyll/metabolism , Quantitative Trait Loci , Gene Expression Regulation, Plant , Genetic Association Studies , Polymorphism, Single Nucleotide
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167304, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878830

ABSTRACT

Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A "writer" RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.

7.
Biomed Pharmacother ; 176: 116760, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788595

ABSTRACT

With the increasing prevalence of metabolic disorders, hyperglycemia has become a common risk factor that endangers people's lives and the need for new drug solutions is burgeoning. Trans-2, 4-dimethoxystilbene (TDMS), a synthetic stilbene, has been found as a novel hypoglycemic small molecule from glucose consumption test. Normal C57BL/6 J mice, mouse models of type 1 diabetes mellitus and diet-induced obesity subjected to TDMS gavage were found with lower glycemic levels and better glycemic control. TDMS significantly improved the symptoms of polydipsia and wasting in type 1 diabetic mice, and could rise their body temperature at the same time. It was found that TDMS could promote the expression of key genes of glucose metabolism in HepG2, as do in TDMS-treated liver, while it could improve the intestinal flora and relieve intestinal metabolic dysbiosis in hyperglycemic models, which in turn affected its function in the liver, forming the gut-liver axis. We further fished PPARγ by virtual screening that could be promoted by TDMS both in-vitro and in-vivo, which was regulated by upstream signaling of AMPKα phosphorylation. As a novel hypoglycemic small molecule, TDMS was proven to be promising with its glycemic improvements and amelioration of diabetes symptoms. It promoted glucose absorption and utilization by the liver and improved the intestinal flora of diabetic mice. Therefore, TDMS is expected to become a new hypoglycemic drug that acts through gut-liver axis via AMPKα-PPARγ signaling pathway in improving glycemic metabolism, bringing new hope to patients with diabetes and glucose metabolism disorders.


Subject(s)
AMP-Activated Protein Kinases , Gastrointestinal Microbiome , Hypoglycemic Agents , Liver , Mice, Inbred C57BL , PPAR gamma , Signal Transduction , Stilbenes , Animals , Gastrointestinal Microbiome/drug effects , Hypoglycemic Agents/pharmacology , Liver/drug effects , Liver/metabolism , Humans , PPAR gamma/metabolism , AMP-Activated Protein Kinases/metabolism , Mice , Male , Stilbenes/pharmacology , Signal Transduction/drug effects , Hep G2 Cells , Diabetes Mellitus, Experimental/drug therapy , Blood Glucose/drug effects , Blood Glucose/metabolism
8.
J Mol Model ; 30(6): 192, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814476

ABSTRACT

CONTEXT: The compounds of the "565" parent ring structure have received much attention from researchers because of their excellent detonation performance. In the present study, 81 derivatives were designed by introducing different substituents based on 6-dinitrophenyl-5,6,7,8-tetrahydro-4-imidazo[4,5-e]furazano[3,4-b] pyrazine (DIOP), which is a compound of the parent ring structure of 565, and the performance of these derivatives, such as the electronic structure, energy gap, heat of formation, and detonation performance, were investigated. Among these energy-containing derivatives, the density ranges from 1.70 to 2.17 g/cm3, the detonation velocity ranges from 8.01 to 10.26 km/s, and the detonation pressure ranges from 27.99 to 49.88 GPa. Through comprehensive analysis of several properties of DIOP derivatives, it was found that the oxygen balance of derivatives with the -ONO2 group was greater than zero and close to zero, while the oxygen balance of derivatives with other groups was almost all less than zero. Among them, G8 (D = 10.1 km/s, P = 47.72 GPa), H8 (D = 10.11 km/s, P = 47.92 GPa), and I8 (D = 10.26 km/s, P = 49.88 GPa) had higher detonation velocity and pressure among all derivatives, and their impact sensitivity was better than RDX. Therefore, three potential high-energy and less sensitive energy-containing derivatives, G8, H8, and I8, were screened out. The intramolecular interactions of the three derivatives were further analyzed, and it was found that there were intensive van der Waals interactions and significant spatial steric effects within the molecules, which had a positive effect on reducing the shock sensitivity of the compounds. Moreover, the three derivatives have a large degree of stacking, which leads to a high density. METHODS: All calculations in this paper are performed using Gaussian16 based on density functional theory. Firstly, the structures of the derivatives were optimized at the level of B3LYP-D3/6-311G**, and then single-site energy calculations were carried out at the level of M06-2X-D3/def2-TZVPP, to reveal the effects of single substituents versus multiple substituents and isomerism on the properties of the DIOP-based energetic derivatives. Multiwfn was used to plot the density of states (DOS) of the derivatives and to calculate the molecular surface electrostatic potential at 0.001 e/Bohr3 electron density, 0.25 Bohr lattice spacing surface.

9.
Toxicol Res (Camb) ; 13(3): tfae068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737340

ABSTRACT

Introduction: Currently, the role and mechanism of dopamine in non-alcoholic steatohepatitis (NASH) remains unclear. Methods: In vitro experiments utilized FFA and LPS to establish NASH cell models, while a fibrotic cell model was created using TGFß1 to investigate the impact of dopamine on cellular lipid metabolism, inflammation, and fibrosis. In vivo experiments involved the use of MCD and HFD diets to induce NASH in mouse models for observing the effects of dopamine on NASH disease progression. Results: Our study showed that dopamine significantly downregulated the expression levels of Caspase 1, IL-1ß and IL18 in the HepG2 NASH cell model. In addition, dopamine could inhibit the TGF-ß1-induced accumulation of collagen I and α-SMA in LX2 cells. In vivo experiments have shown that dopamine attenuation in mice is associated with MCD diet-induced and HFD-induced steatohepatitis. Mechanically, dopamine inhibits the p65 signaling pathway in NASH. Conclusion: In conclusion, the present study demonstrates the role of dopamine in ameliorating the symptoms of NASH and provides a direction for future research on the application of the dopaminergic system to liver disease.

10.
Phys Rev Lett ; 132(19): 191901, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804936

ABSTRACT

We present the first lattice QCD calculation of the universal axial γW-box contribution □_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon four-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at □_{γW}^{VA}=3.65(7)_{lat}(1)_{PT}×10^{-3}. Consequently, this yields a slightly higher value of |V_{ud}|=0.973 86(11)_{exp}(9)_{RC}(27)_{NS}, reducing the previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box contribution to the axial charge g_{A}, denoted as □_{γW}^{VV}, and explore its potential implications.

11.
J Colloid Interface Sci ; 668: 50-58, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669995

ABSTRACT

The ever-growing requirement for electrochemical energy storage has exacerbated the production of spent batteries, and the recycling of valuable battery components has recently received a remarkable attention. Among all battery components, copper foil is widely utilized as a current collector for stable zinc platting and stripping in zinc metal batteries (ZMBs) due to the perfect lattice matching of between metal copper and zinc, which is accompanied by the formation of multiple copper-zinc alloy components during the cycling process. Herein, a novel "two birds with one-stone" strategy through a one simple heat treatment step to revive the discarded copper foil in zinc metal battery is reported to further obtain a lithiophilic current collector (CuxZny-Cu) with multiple copper-zinc alloy components on the surface of the discarded copper foil. Such revived CuxZny-Cu current collector greatly reduces the lithium nucleation overpotential and realizes uniform lithium deposition and further inhibits lithium dendrites growth. The formed multiple CuxZny alloy phases on the surface of discarded copper foil exhibit a low Li nucleation overpotential of only 15 mV at 0.5 mA cm-2 for the first cycle. Moreover, such a CuxZny-Cu current collector could achieve stable cycle for 220 cycles at 0.5 mA cm-2 and 110 cycles at 1 mA cm-2 with a Li plating capacity of 1 mAh cm-2. Theoretical calculations indicate that, compared with pure Cu foil, the formed multiple alloy components of CuZn5, CuZn8, Cu0.61Zn0.39 and CuZn have low adsorption energy of -2.17, -2.55, -2.16 and -2.35 eV with lithium atoms, respectively, which result in reduced lithium nucleation overpotential. The full cell composed of CuxZny alloy current collector with deposition of 5 mAh cm-2 metal Li anode coupled with LiFePO4 (LFP) cathode exhibits a reversible capacity of 125.6 mAh/g after 110 cycles at a current of 0.5 C with capacity retention of 85.1 %. This work proposed a promising strategy to regenerate the discarded copper foil in rechargeable batteries.

12.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38676004

ABSTRACT

To monitor the position and profile of therapeutic carbon beams in real-time, in this paper, we proposed a system called HiBeam-T. The HiBeam-T is a time projection chamber (TPC) with forty Topmetal-II- CMOS pixel sensors as its readout. Each Topmetal-II- has 72 × 72 pixels with the size of 83 µm × 83 µm. The detector consists of the charge drift region and the charge collection area. The readout electronics comprise three Readout Control Modules and one Clock Synchronization Module. This Hibeam-T has a sensitive area of 20 × 20 cm and can acquire the center of the incident beams. The test with a continuous 80.55 MeV/u 12C6+ beam shows that the measurement resolution to the beam center could reach 6.45 µm for unsaturated beam projections.

13.
J Mol Model ; 30(5): 124, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578379

ABSTRACT

CONTEXT: The crystal and molecular structure, electronic properties, optical parameters, and elastic properties of a 1:2 hexanitrohexaazaisowurtzitane (CL-20)/2-mercapto-1-methylimidazole (MMI) cocrystal under 0 ~ 100 GPa hydrostatic pressure were calculated. The results show that the cocrystal CL-20/MMI undergoes three structural transitions at 72 GPa, 95 GPa, and 97 GPa, respectively, and the structural transition occurs in the part of the MMI compound. Structural mutations formed new bonds S1-S2, C2-C7, and N1C5 at 72GPa, 95 GPa, and 97 GPa, respectively. Similarly, the formation of new bonds is confirmed on the basis of an analysis of the changes in lattice constants, cell volumes, and partial densities of states (PDOS) for S1, S2, C2, C7, N1, and C3 at the corresponding pressures. The optical parameters show that the pressure makes the peaks of various optical parameters of CL-20/MMI larger, and the optical activity is enhanced. The optical parameters also confirm the structural mutation of CL-20/MMI under the corresponding pressure. METHOD: CL-20/MMI was calculated by using the first-principles norm-conservative pseudopotential based on density functional theory (DFT) in the CASTEP software package. For the optimization results, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is selected to optimize the geometry of the cocrystal in the range of 0-100 GPa. GGA/PBE (Perdew-Burke-Ernzerhof) was selected to relax the cocrystal CL-20/MMI fully without constraints at atmospheric pressure. The sampling scheme in the Brillouin zone [10] is the Monkhorst-Pack scheme, and the number of k-point grids was 2 × 2 × 2. By contrast, this study will use the LDA method to calculate.

14.
BMC Biol ; 22(1): 97, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679718

ABSTRACT

BACKGROUND: The plastid is the photosynthetic organelle in plant cell, and the plastid genomes (plastomes) are generally conserved in evolution. As one of the most economically and ecologically important order of angiosperms, Poales was previously documented to exhibit great plastomic variation as an order of photoautotrophic plants. RESULTS: We acquired 93 plastomes, representing all the 16 families and 5 major clades of Poales to reveal the extent of their variation and evolutionary pattern. Extensive variation including the largest one in monocots with 225,293 bp in size, heterogeneous GC content, and a wide variety of gene duplication and loss were revealed. Moreover, rare occurrences of three inverted repeat (IR) copies in angiosperms and one IR loss were observed, accompanied by short IR (sIR) and small direct repeat (DR). Widespread structural heteroplasmy, diversified inversions, and unusual genomic rearrangements all appeared in Poales, occasionally within a single species. Extensive repeats in the plastomes were found to be positively correlated with the observed inversions and rearrangements. The variation all showed a "small-large-moderate" trend along the evolution of Poales, as well as for the sequence substitution rate. Finally, we found some positively selected genes, mainly in C4 lineages, while the closely related lineages of those experiencing gene loss tended to have undergone more relaxed purifying selection. CONCLUSIONS: The variation of plastomes in Poales may be related to its successful diversification into diverse habitats and multiple photosynthetic pathway transitions. Our order-scale analyses revealed unusual evolutionary scenarios for plastomes in the photoautotrophic order of Poales and provided new insights into the plastome evolution in angiosperms as a whole.


Subject(s)
Evolution, Molecular , Genome, Plastid , Genetic Variation , Magnoliopsida/genetics , Phylogeny , Biological Evolution
15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 161-168, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686711

ABSTRACT

Objective To analyze the clinical efficacy of microwave ablation in the colorectal cancer with simultaneously multiple liver metastases that was initially evaluated as potentially resectable. Methods The patients with potentially resectable colorectal cancer with simultaneous multiple liver metastases treated in the Department of General Surgery of the First Affiliated Hospital of Hebei North University,the Center of Minimally Invasive Therapy in Oncology of Traditional Chinese and Western Medicine in Dongzhimen Hospital of Beijing University of Chinese Medicine,and the Second Department of General Surgery in the Fourth Hospital of Hebei Medical University from October 1,2018 to October 1,2020 were selected in this study.The general data,pathological features,treatment methods,and clinical efficacy of the patients were collected.According to the treatment methods,the patients were assigned into a surgical resection group(conversion therapy+laparoscopic primary resection+hepatectomy)and a microwave ablation group(conversion therapy+laparoscopic primary resection+microwave ablation).The surgical indicators(operation duration,time to first postoperative anal exhaust,hospital stay,etc.)and postoperative complications(anastomotic stenosis,anastomotic hemorrhage,incision infection,etc.)were compared between the two groups.The survival period was followed up,including the overall survival period and disease-free survival period,and the survival curves were drawn to analyze the clinical efficacy of the two treatment regimens. Results A total of 198 patients with potentially resectable colorectal cancer with simultaneous multiple liver metastases were included in this study.Sixty-six patients were cured by neoadjuvant chemotherapy(FOLFOX or FOLFIRI),including 30 patients in the surgical resection group and 36 patients in the microwave ablation group(with 57 tumors ablated).After the first ablation,54(94.74%)tumors achieved complete ablation,and all of them reached no evidence of disease status after re-ablation.The microwave ablation group had shorter operation duration,less intraoperative blood loss,shorter time to first postoperative anal exhaust,shorter time of taking a liquid diet,shorter hospital stay,and lower hospitalization cost than the surgical resection group(all P<0.001).In addition,the microwave ablation group had lower visual analogue scale score(P<0.001)than the surgical resection group.The incidences of complications such as incision infection(P=0.740),anastomotic fistula(P=1.000),and anastomotic stenosis(P=1.000),the overall survival period(P=0.191),and the disease-free survival period(P=0.934)showed no significant differences between the two groups. Conclusions For patients with colorectal cancer with simultaneous multiple liver metastases initially assessed as potentially resectable,laparoscopic primary resection+surgical resection/microwave ablation after conversion therapy was safe,effective,and had similar survival outcomes.Microwave ablation outperformed surgical resection in postoperative recovery,economy,and tolerability,being worthy of clinical promotion.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Microwaves , Humans , Colorectal Neoplasms/pathology , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Microwaves/therapeutic use , Laparoscopy/methods , Male , Female , Treatment Outcome , Fluorouracil/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Survival Rate
16.
Mil Med Res ; 11(1): 20, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556884

ABSTRACT

BACKGROUND: Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury (TBI). However, the heterogeneity, multifunctionality, and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood. METHODS: Using the combined single-cell transcriptomics, metabolomics, and proteomics analysis from TBI patients and the TBI mouse model, we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests. We also characterized the underlying mechanisms both in vitro and in vivo through molecular simulations, signaling detections, gene expression regulation assessments [including dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays], primary cultures or co-cultures of neutrophils and oligodendrocytes, intracellular iron, and lipid hydroperoxide concentration measurements, as well as forkhead box protein O1 (FOXO1) conditional knockout mice. RESULTS: We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model. Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI, aggravating acute brain inflammatory damage and promoting late TBI-induced depression. In the acute stage, FOXO1 upregulated cytoplasmic Versican (VCAN) to interact with the apoptosis regulator B-cell lymphoma-2 (BCL-2)-associated X protein (BAX), suppressing the mitochondrial translocation of BAX, which mediated the antiapoptotic effect companied with enhancing interleukin-6 (IL-6) production of FOXO1high neutrophils. In the chronic stage, the "FOXO1-transferrin receptor (TFRC)" mechanism contributes to FOXO1high neutrophil ferroptosis, disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein, which contributes to the progression of late depression after TBI. CONCLUSIONS: FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI, which provides insight into the heterogeneity, reprogramming activity, and versatility of neutrophils in TBI.


Subject(s)
Brain Injuries, Traumatic , Neutrophils , Animals , Humans , Mice , bcl-2-Associated X Protein/metabolism , Brain , Brain Injuries, Traumatic/complications , Depression , Forkhead Box Protein O1/metabolism , Iron
17.
Org Lett ; 26(15): 3164-3168, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38553426

ABSTRACT

The catalyst-dependent intermolecular carbonyl-alkyne metathesis (CAM) reaction of 1H-indene-1,2,3-triones with internal alkynes was realized using Ru and Co catalysts. 2-(2-Oxo-1,2-diphenylethylidene)-1H-indene-1,3(2H)-dione derivatives were obtained using a Ru catalyst, whereas S-alkyl 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-2-phenylethanethioates were prepared using a Co catalyst. These transformations led to the synthesis of α,ß-unsaturated carbonyl compounds with a broad substrate scope, excellent regiocontrol, and gram-scale amenability. This catalytic strategy using a Co or Ru catalyst has rarely been described for other established CAM catalysts.

18.
J Affect Disord ; 354: 694-701, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38492648

ABSTRACT

From the perspective of the health context paradox, this study examined the relationship between adolescent victimization and depression based on the diathesis-stress model and attribution theory using a nested model. A survey was conducted on 3743 Chinese adolescents using the Bullying & Victimization Scale, Rumination Scale, Beck Depression Inventory, and Bullying Attitude Scale. The results disclosed that victimization had a positive impact on depression, rumination played a mediating role between victimization and depression, and classroom anti-bullying attitudes heightened the correlation between victimization and developing depression as well as between victimization and engaging in rumination thinking. This study provides a new cross-level perspective to reduce the occurrence of depression among bullied adolescents and further validates the health context paradox, expanding its applicability range. It also provides new experimental research references for reducing depression among bullied adolescents from a more comprehensive, cross-level perspective in the future.


Subject(s)
Bullying , Crime Victims , Humans , Adolescent , Depression , Surveys and Questionnaires , Psychiatric Status Rating Scales
19.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491323

ABSTRACT

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Subject(s)
Poaceae , Tetraploidy , Poaceae/genetics , Polyploidy , Genomics , Transcriptome/genetics , Genome, Plant/genetics , Evolution, Molecular
20.
J Agric Food Chem ; 72(13): 7167-7178, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511978

ABSTRACT

IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.


Subject(s)
Globulins , Non-alcoholic Fatty Liver Disease , Soybean Proteins , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Dipeptidyl Peptidase 4/metabolism , Liver/metabolism , Globulins/metabolism , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...