Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 102: 106714, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113586

ABSTRACT

A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous Fe3O4@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction. The microrobot is fabricated by wrapping polypyrrole (PPy) on a spiny magnetic template prepared from sunflowers pollen. Modulating the sound pressure and frequency of the ultrasonic field enables the Fe3O4@PPy microrobot to present multimode motion, such as violent eruption-like motion caused by local cavitation (ELM), march-like unific motion (MLM), and typhoon-like rotation toward the center gathered motion (TLM). This multimode motion achieves the sufficient locomotion of microrobots in three-dimensional space and effective contact with organic pollutants in polluted water. Furthermore, a 5.2-fold increase in the degradation rate of methylene blue has been realized using Fe3O4@PPy microrobots under low-concentration hydrogen peroxide conditions. Also, the magnetically controlled recovery of microrobots from water after the completion of the degradation task has been demonstrated. The magnetic-acoustic actuated spinous microrobot can be extrapolated to other catalytic microrobot, developing a new strategy for an easier implementation and recovery of microrobot in real applications of water purification.

2.
J Orthop Surg Res ; 18(1): 892, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993925

ABSTRACT

BACKGROUND: Osteosarcoma is a common malignant bone tumor, and chemotherapy can effectively improve the prognosis. MicroRNA-331 (MiR-331) is associated with poor cancer outcomes. However, the role of miR-331 in osteosarcoma remains to be explored. METHODS: Drug-resistant osteosarcoma cells were cultured, and their exosomes were purified. The secretion and uptake of exosomes by drug-resistant osteosarcoma and osteosarcoma cells were confirmed using a fluorescence tracking assay and Transwell experiments. The effects of drug-resistant exosomes on cell proliferation were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. siRNA-Drosha and neutral sphingomyelinase inhibitor GW4869 were used to determine the transfer of miRNAs. qRT-PCR and western blotting were used to detect the role of autophagy in the regulation of drug-resistant cell-derived exosomal miR-331-3p. RESULTS: Exosomal miR-331-3p levels in drug-resistant cells were higher than in exosomes from osteosarcoma cells. The exosomes secreted by the drug-resistant osteosarcoma cells could be absorbed by osteosarcoma cells, leading to acquired drug resistance in previously non-resistance cells. Inhibition of miRNAs resulted in reduced transmission of drug resistance transmission by exosomes. Exosomes from drug-resistant osteosarcoma cells transfected with siRNA-Drosha or treated by GW4869 could not enhance the proliferation of MG63 and HOS cells. Finally, miR-331-3p in the exosomes secreted by drug-resistant osteosarcoma cells could induce autophagy of osteosarcoma cells, allowing them to acquire drug resistance. The inhibition of miR-331-3p decreased drug resistance of osteosarcoma cells. CONCLUSION: Exosomes secreted from chemoresistant osteosarcoma cells promote drug resistance through miR-331-3p and autophagy. Inhibition of miR-331-3p could be used to alleviate drug resistance in osteosarcoma.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Drug Resistance, Neoplasm/genetics , MicroRNAs/genetics , Osteosarcoma/drug therapy , Osteosarcoma/genetics , RNA, Small Interfering , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Autophagy/genetics , Cell Proliferation/genetics , Cell Line, Tumor
3.
Int Immunopharmacol ; 120: 110315, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245297

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is the most prevalent musculoskeletal disease, imposing a significant public health burden. Exosomes might be an effective means of treating OA. PURPOSE: To investigate the role of exosomes from adipose tissue-derived stromal cells (ADSCs) in OA. We explored whether exosomes from ADSCs could be absorbed by OA chondrocytes, whether there were differences in miR-429 expression in the exosomes of ADSCs and chondrocytes, and whether ADSC exosomal miR-429 could enhance chondrocyte proliferation to exert therapeutic effects in OA. STUDY DESIGN: Controlled laboratory study. METHODS: ADSCs were isolated and cultured from 4-week-old Sprague-Dawley rats. ADSCs and chondrocytes were identified by flow cytometry assay and fluorescent staining, respectively. The exosomes were extracted and identified. Exosome transport was verified by cell staining and co-culture. Beclin 1, collagen II, LC3-II/I, miR-429, and FEZ2 mRNA and protein expression were investigated with real-time PCR and western blotting, respectively. Chondrocyte proliferation was investigated with Cell Counting Kit-8 (CCK-8) assay. The association between miR-429 and FEZ2 was verified with luciferase assay. A rat OA model was established and rat knee joint cartilage tissue was examined with hematoxylin-eosin and toluidine blue staining. RESULTS: Both ADSCs and chondrocytes secreted exosomes and ADSC-derived exosomes could be absorbed by the chondrocytes. ADCS exosomes contained higher miR-429 levels than chondrocyte exosomes. The luciferase assay demonstrated that miR-429 directly targeted FEZ2. Compared with the OA group, miR-429 promoted chondrocyte proliferation while FEZ2 decreased it. miR-429 promoted autophagy by targeting FEZ2 to ameliorate cartilage injury. In vivo, miR-429 promoted autophagy to alleviate OA by targeting FEZ2. CONCLUSION: ADSC exosomes could be beneficial for OA and could be absorbed by chondrocytes to promote chondrocyte proliferation through miR-429. miR-429 ameliorated cartilage injury in OA by targeting FEZ2 and promoting autophagy.


Subject(s)
MicroRNAs , Osteoarthritis , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Chondrocytes/metabolism , Osteoarthritis/metabolism , Autophagy/genetics , Stem Cells/metabolism
4.
J Neuropathol Exp Neurol ; 82(5): 419-426, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36779914

ABSTRACT

Neuropathic pain (NP) is pain caused by injury or dysfunction of the somatosensory system. The role of Rac2, a member of the Rac family, which is expressed in neutrophils, macrophages, and adult T cells, in NP remains unclear. Using a chronic constriction injury (CCI)-induced NP model in rats, we found that Rac2 expression was elevated in rats with CCI-induced NP and that overexpression of Rac2 aggravated the NP. Rac2 overexpression also aggravated the inflammatory response, induced activation of microglia and astrocytes, and enhanced apoptosis whereas knockdown of Rac2 had the opposite effects. Rac2 suppressed SIRT1 expression via activating the c-Jun N-terminal kinase (JNK) signaling pathway. In rescue experiments, SRT1720, an activator of SIRT1, reversed the effect of Rac2 on glial activation, inflammatory response, and apoptosis. These findings indicate that Rac2 enhances the activation of microglia and astrocytes, inflammatory response, and apoptosis via activating the JNK signaling pathway and suppressing SIRT1 expression in CCI-induced NP.


Subject(s)
Microglia , Neuralgia , Rats , Animals , Microglia/metabolism , Astrocytes/metabolism , Rats, Sprague-Dawley , MAP Kinase Signaling System , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Constriction , Neuralgia/etiology , Neuralgia/metabolism
5.
Biomed Res Int ; 2022: 8717950, 2022.
Article in English | MEDLINE | ID: mdl-36060145

ABSTRACT

Introduction: The effect of sulodexide (SLX) on obstructive jaundice- (OJ-) induced acute lung injury (ALI) in rats was examined in this study. Methods: In this study, 48 rats were randomly assigned to one of six groups: sham, OJ, OJ+saline, OJ+SLX (0.5 mg/ml/d), OJ+SLX (1 mg/ml/d), and OJ+SLX (2 mg/ml/d). The pathological lung injury was assessed by histological analysis and lung injury grading. ELISA kits were used to evaluate the expression of IL-6, IL-1, TNF-α, and syndecan-1 (SDC-1) in bronchoalveolar lavage fluids (BALFs). Commercial assay kits were performed to evaluate malondialdehyde (MDA) production and catalase (CAT) activity in lung tissues. The apoptosis was assessed by TUNEL assay. The lung microvascular permeability was investigated using Evans blue leakage, lung wet/dry weight (W/D) ratio, and lung permeability index (LPI). SDC-1, claudin-5, ZO-1, and VE cadherin expression levels in lung tissues were measured using Western blot. Results: The OJ-induced ALI rats showed severe lung injury. The value of IL-6, IL-1ß, TNF-α, and SDC-1 in BALFs was remarkedly increased in the OJ group. MDA content, apoptotic area, apoptotic molecules, and SDC-1 level were all higher in the OJ group's lung tissues than in the sham group. CAT activity, Evans blue leakage, W/D ratio, LPI, and expression of claudin-5, ZO-1, and VE cadherin were all lower in the OJ group compared to the sham group. The degenerative alterations in lung tissue improved after 7 days of treatment with 2 mg/ml SLX. The BALFs had lower amounts of IL-6, IL-1, TNF-α, and SDC-1. The SLX therapy reduced MDA levels while restoring CAT activity. In lung tissues, SLX reduced apoptotic area and SDC-1 expression. SLX reduced lung microvascular permeability by raising the expression of Claudin-5, ZO-1, and VE-cadherin in lung tissue when compared to the OJ group. Conclusion: The results suggested that SLX attenuates OJ-induced ALI in rats by protecting the pulmonary microvascular endothelial barrier.


Subject(s)
Acute Lung Injury , Glycosaminoglycans , Jaundice, Obstructive , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Animals , Antioxidants , Cadherins , Claudin-5 , Disease Models, Animal , Evans Blue/adverse effects , Glycosaminoglycans/pharmacology , Interleukin-6 , Jaundice, Obstructive/complications , Rats , Tumor Necrosis Factor-alpha
6.
Psychopharmacology (Berl) ; 237(6): 1657-1669, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32125485

ABSTRACT

RATIONALE: Clinically, chronic postsurgical pain (CPSP) is very common. Many CPSP patients may experience depression. Thus far, little is known about the mechanism of the comorbidity of CPSP and depression. Ketamine has been confirmed to possess analgesic and rapid antidepressant effects, but it is unclear whether ketamine can relieve the comorbidity of CPSP and depression. OBJECTIVES: The present study evaluated the effects of ketamine in rats with the comorbidity of CPSP and depression. METHODS: We induced CPSP in rats by thoracotomy and screened for rats with or without depression-like phenotype by hierarchical cluster analysis based on the results of depression-related behavioral experiments. Subsequently, rats were intraperitoneally injected with ketamine (20 mg/kg) and were evaluated by mechanical withdrawal threshold, cold hyperalgesia test, sucrose preference test, forced swimming test, and open field test. The inflammatory-related cytokines (IL-1, IL-6, TNF-α, nuclear factor-kappaB), oxidative stress parameters (superoxide dismutase, malondialdehyde, glutathione, catalase), and brain-derived neurotrophic factor (BDNF) in rat hippocampus were detected. RESULTS: In the hippocampus of rats with the comorbidity of CPSP and depression, IL-1, IL-6, TNF-α, nuclear factor-kappaB, and malondialdehyde were significantly increased, while superoxide dismutase, glutathione, catalase, and BDNF were significantly decreased. Ketamine relieved depression but did not attenuate hyperalgesia in CPSP rats. Additionally, ketamine reduced proinflammatory cytokines, inhibited oxidative stress, and elevated BDNF levels in rat hippocampus. CONCLUSIONS: Ketamine can rapidly relieve CPSP-induced depression in rats, which may be related to the reduction of proinflammatory cytokines, regulating oxidative stress and increasing BDNF in the hippocampus.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Antioxidants/therapeutic use , Brain-Derived Neurotrophic Factor/biosynthesis , Depression/drug therapy , Ketamine/therapeutic use , Pain, Postoperative/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Depression/metabolism , Depression/psychology , Gene Expression , Hippocampus/drug effects , Hippocampus/metabolism , Ketamine/pharmacology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pain, Postoperative/metabolism , Pain, Postoperative/psychology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...