Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 92(7): e0021524, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38884473

ABSTRACT

Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.


Subject(s)
Antigens, Protozoan , Babesia microti , Babesiosis , Gene Library , Babesia microti/immunology , Babesia microti/genetics , Humans , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Babesiosis/immunology , Babesiosis/parasitology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Erythrocytes/parasitology , Erythrocytes/immunology , Cell Surface Display Techniques , Animals
2.
Front Oncol ; 10: 586820, 2020.
Article in English | MEDLINE | ID: mdl-33240817

ABSTRACT

BACKGROUND: SIGLEC family genes can also be expressed on tumor cells in different cancer types, and though it has been found that SIGLEC genes expressed by immune cells can be exploited by tumors to escape immune surveillance, functions of tumor derived SIGLEC expression in tumor microenvironment (TME) were barely investigated, which could play roles in cancer patients' survival. METHODS: Using bioinformatic analysis, mutation status of SIGLEC family genes was explored through the cBioPortal database, and expression of them in different tumors was explored through the UALCAN database. The GEPIA database was used to compare SIGLEC family genes' mRNA between cancers and to generate a highly correlated gene list in tumors. A KM-plotter database was used to find the association between SIGLEC genes and survival of patients. The associations between SIGLEC family genes' expression, immune infiltration, and immune regulators' expression in TME were generated and examined by the TIMER 2.0 database; the differential fold changes of SIGLEC family genes in specific oncogenic mutation groups of different cancer types were also yielded by TIMER 2.0. The networks of SIGLEC family genes and highly correlated genes were constructed by the STRING database, and gene ontology and pathway annotation of SIGLEC family highly correlated genes were performed through the DAVID database. RESULTS: SIGLEC family genes were highly mutated and amplified in melanoma, endometrial carcinoma, non-small cell lung cancer, bladder urothelial carcinoma, and esophagogastric adenocarcinoma, while deep deletion of SIGLEC family genes was common in diffuse glioma. Alteration of SIGLEC family genes demonstrated different levels in specific tumors, and oncogenic mutation in different cancer types could influence SIGLEC family genes' expression. Most SIGLEC family genes were related to patients' overall survival and progression free survival. Also, tumor derived SIGLEC family genes were related to tumor immune cell infiltration and may regulate TME by influencing chemokine axis. CONCLUSION: Our computational analysis showed SIGLEC family genes expressed by tumor cells were associated with tumor behaviors, and they may also influence TME through chemokine axis, playing vital roles in patients' survival. Further experiments targeting tumor derived SIGLEC family genes are needed to confirm their influences on tumor growth, metastasis, and immune environment regulation.

3.
Biochem Biophys Res Commun ; 532(2): 258-264, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32863002

ABSTRACT

Anoikis is a programmed death of cell induced upon detachment from the extracellular matrix (ECM). Resistance to anoikis is a critical contributor to cancer invasion and metastasis. High frequency of metastatic recurrence is a huge challenge for current therapy of hepatocellular carcinoma (HCC). Our previous study had identified sulfhydryl oxidase 1 (QSOX1) as a suppressor of HCC metastasis. In the present study, we used the anchorage-independent growth condition to mimic the detachment of HCC cells from ECM. We found that QSOX1 was induced in HCC cells under the anchorage-independent growth condition and that could be blocked by endoplasmic reticulum stress (ERS) inhibitor. Overexpression and knockdown of QSOX1 gene were performed on HCC cells. QSOX1 inhibited de novo synthesis of fatty acids (FAs) and cholesterol (ChE) and reduced their content in the detached HCC cells, and thus mediated mitochondrial apoptosis of HCC cells. In conclusion, QSOX1 is induced under detached culture condition via ERS. QSOX1 promotes mitochondrial apoptosis by suppressing the lipid synthesis of HCC cells in detached condition. QSOX1 appears to accelerate anoikis of HCC cells. These findings offer a new insight into how to overcome anoikis resistance of HCC cells and provide a potential target for prevention of HCC metastasis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Lipids/biosynthesis , Liver Neoplasms/pathology , Mitochondria/pathology , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Anoikis/physiology , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Cholesterol/metabolism , Endoplasmic Reticulum Stress , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lactic Acid/metabolism , Liver Neoplasms/metabolism , Mitochondria/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics
4.
Theranostics ; 10(10): 4627-4643, 2020.
Article in English | MEDLINE | ID: mdl-32292519

ABSTRACT

Hepatocellular carcinoma (HCC) remains one of the most refractory malignancies worldwide. Schlafen family member 11 (SLFN11) has been reported to play an important role in inhibiting the production of human immunodeficiency virus 1 (HIV-1). However, whether SLFN11 also inhibits hepatitis B virus (HBV), and affects HBV-induced HCC remain to be systematically investigated. Methods: qRT-PCR, western blot and immunohistochemical (IHC) staining were conducted to investigate the potential role and prognostic value of SLFN11 in HCC. Then SLFN11 was stably overexpressed or knocked down in HCC cell lines. To further explore the potential biological function of SLFN11 in HCC, cell counting kit-8 (CCK-8) assays, colony formation assays, wound healing assays and transwell cell migration and invasion assays were performed in vitro. Meanwhile, HCC subcutaneous xenograft tumor models were established for in vivo assays. Subsequently, immunoprecipitation (IP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analyses were applied to understand the molecular mechanisms of SLFN11 in HCC. Co-IP, immunofluorescence and IHC staining were used to analyze the relationship between ribosomal protein S4 X-linked (RPS4X) and SLFN11. Finally, the therapeutic potential of SLFN11 with mTOR pathway inhibitor INK128 on inhibiting HCC growth and metastasis was evaluated in vitro and in vivo orthotopic xenograft mouse models. Results: We demonstrate that SLFN11 expression is decreased in HCC, which is associated with shorter overall survival and higher recurrence rates in patients. In addition, we show that low SLFN11 expression is associated with aggressive clinicopathologic characteristics. Moreover, overexpression of SLFN11 inhibits HCC cell proliferation, migration, and invasion, facilitates apoptosis in vitro, and impedes HCC growth and metastasis in vivo, all of which are attenuated by SLFN11 knockdown. Mechanistically, SLFN11 physically associates with RPS4X and blocks the mTOR signaling pathway. In orthotopic mouse models, overexpression of SLFN11 or inhibition of mTOR pathway inhibitor by INK128 reverses HCC progression and metastasis. Conclusions: SLFN11 may serve as a powerful prognostic biomarker and putative tumor suppressor by suppressing the mTOR signaling pathway via RPS4X in HCC. Our study may therefore offer a novel therapeutic strategy for treating HCC patients with the mTOR pathway inhibitor INK128.


Subject(s)
Carcinogenesis/drug effects , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/pathology , Nuclear Proteins/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Benzoxazoles/therapeutic use , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/surgery , Case-Control Studies , Cell Movement/drug effects , Cell Proliferation/drug effects , Chromatography, Liquid/methods , Disease Progression , Down-Regulation , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasm Metastasis/therapy , Nuclear Proteins/metabolism , Prognosis , Pyrimidines/therapeutic use , Ribosomal Proteins/drug effects , Tandem Mass Spectrometry/methods
5.
J Cancer ; 10(15): 3333-3343, 2019.
Article in English | MEDLINE | ID: mdl-31293636

ABSTRACT

Glutamate-cysteine ligase catalytic subunit (GCLC) has been reported to overexpress in a variety types of cancer and be related with tumor progression and drug resistance. However, little has been known about GCLC's prognostic significance and biological roles in hepatocellular carcinoma (HCC). In the present study, we evaluated GCLC expression level using immunohistochemical staining (IHC) in tissue microarray (TMA) containing paired tumor and peritumoral liver tissues from 168 patients with HCC who received curative resection. GCLC levels in tumor tissues were significantly higher than in peritumoral liver tissues, and tumor GCLC level was associated with overall survival (OS) and disease-free survival (DFS). Five-year OS and DFS rates were 41.15% and 25.88% for the group with high tumor GCLC level, compared with 68.09% and 47.51% for the group with low tumor GCLC level (P<0.001 and P=0.001, respectively). Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis demonstrated that GCLC was transcriptionally activated in HCC tissues when comparing with peritumoral tissues. Tumor GCLC level, which correlated to tumor differentiation, microvascular invasion and BCLC stage, was independent prognostic factors for both OS (P=0.006) and DFS (P=0.003). Importantly, tumor GCLC level was still significantly associated with OS and DFS in patients with early HCC. GCLC-based nomogram models were further established and exhibit significantly higher predictive accuracy as compared with routine clinical staging systems. In conclusion, tumor GCLC is a potential prognostic biomarker for HCC patients after receiving curative resection.

SELECTION OF CITATIONS
SEARCH DETAIL
...