Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767472

ABSTRACT

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

2.
Front Immunol ; 15: 1402024, 2024.
Article in English | MEDLINE | ID: mdl-38873598

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.


Subject(s)
Cholesterol , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Cholesterol/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Host-Pathogen Interactions/immunology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Lipid Metabolism
3.
Food Chem ; 454: 139811, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38820631

ABSTRACT

Autophagy (AU) and programmed cell death (PCD) are dynamically regulated during tomato fruit defense against Botrytis cinerea, which are also manipulated by pathogenic effectors to promote colonization. Present study demonstrated that the enhanced defense induced by transient inhibition on AU by hydroxychloroquine (HCQ) facilitated the restriction of B. cinerea lesion on postharvest tomato. Pre-treatment of 2 mM (16.08 ± 3.42 cm at 7 d) and 6 mM (7.80 ± 2.39 cm at 7 d) HCQ inhibited the lesion development of B. cinerea compared with Mock treatment (50.02 ± 7.69 cm at 7 d). Transient inhibition of AU induced expression of fungal defense and transcriptional regulation related genes, but attenuated reactive oxygen species (ROS) burst gene expression. The ROS-induced PCD was compromised by HCQ with promoted ROS scavenging. The transient pre-treatment of HCQ slightly inhibited AU which triggered the feedback loop that enhanced the autophagic activity defensing against B. cinerea infection.

4.
Exp Neurol ; 379: 114825, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777251

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.

5.
Open Life Sci ; 19(1): 20220834, 2024.
Article in English | MEDLINE | ID: mdl-38465343

ABSTRACT

Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.

6.
CNS Neurosci Ther ; 30(2): e14573, 2024 02.
Article in English | MEDLINE | ID: mdl-38421101

ABSTRACT

AIMS: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. AD pathology involves protein acetylation. Previous studies have mainly focused on histone acetylation in AD, however, the roles of nonhistone acetylation in AD are less explored. METHODS: The protein acetylation and expression levels were detected by western blotting and co-immunoprecipitation. The stoichiometry of acetylation was measured by home-made and site-specific antibodies against acetylated-CaM (Ac-CaM) at K22, K95, and K116. Hippocampus-dependent learning and memory were evaluated by using the Morris water maze, novel object recognition, and contextual fear conditioning tests. RESULTS: We showed that calmodulin (CaM) acetylation is reduced in plasma of AD patients and mice. CaM acetylation and its target Ca2+ /CaM-dependent kinase II α (CaMKIIα) activity were severely impaired in AD mouse brain. The stoichiometry showed that Ac-K22, K95-CaM acetylation were decreased in AD patients and mice. Moreover, we screened and identified that lysine deacetylase 9 (HDAC9) was the main deacetylase for CaM. In addition, HDAC9 inhibition increased CaM acetylation and CaMKIIα activity, and hippocampus-dependent memory in AD mice. CONCLUSIONS: HDAC9-mediated CaM deacetylation induces memory impairment in AD, HDAC9, or CaM acetylation may become potential therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Humans , Animals , Alzheimer Disease/metabolism , Calmodulin , Mice, Transgenic , Memory Disorders/etiology , Hippocampus/metabolism , Disease Models, Animal , Histone Deacetylases/metabolism , Repressor Proteins/metabolism
7.
Clin Rehabil ; 38(6): 715-731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38317586

ABSTRACT

OBJECTIVE: To review the effectiveness of different physical therapies for acute and sub-acute low back pain supported by evidence, and create clinical recommendations and expert consensus for physiotherapists on clinical prescriptions. DATA SOURCES: A systematic search was conducted in PubMed and the Cochrane Library for studies published within the previous 15 years. REVIEW METHODS: Systematic review and meta-analysis, randomized controlled trials assessing patients with acute and sub-acute low back pain were included. Two reviewers independently screened relevant studies using the same inclusion criteria. The Physiotherapy Evidence Database and the Assessment of Multiple Systematic Reviews tool were used to grade the quality assessment of randomized controlled trials and systematic reviews, respectively. The final recommendation grades were based on the consensus discussion results of the Delphi of 22 international experts. RESULTS: Twenty-one systematic reviews and 21 randomized controlled trials were included. Spinal manipulative therapy and low-level laser therapy are recommended for acute low back pain. Core stability exercise/motor control, spinal manipulative therapy, and massage can be used to treat sub-acute low back pain. CONCLUSIONS: The consensus statements provided medical staff with appliable recommendations of physical therapy for acute and sub-acute low back pain. This consensus statement will require regular updates after 5-10 years.


Subject(s)
Low Back Pain , Physical Therapy Modalities , Humans , Low Back Pain/rehabilitation , Low Back Pain/therapy , Consensus , Randomized Controlled Trials as Topic , Female , Acute Pain/therapy , Acute Pain/rehabilitation , Male
8.
Front Plant Sci ; 15: 1321900, 2024.
Article in English | MEDLINE | ID: mdl-38375082

ABSTRACT

Controlled-release nitrogen fertilizer (CRNF) has been expected to save labor input, reduce environmental pollution, and increase yield in crop production. However, the economic feasibility is still controversial due to its high cost. To clarify the suitable application strategy of CRNF in promoting the yield, nitrogen use efficiency and income on wheat grown in paddy soil, four equal N patterns were designed in 2017-2021 with polymer-coated urea (PCU) and common urea as material, including PCU applied once pre-sowing (M1), PCU applied 60% at pre-sowing and 40% at re-greening (M2), 30% PCU and 30% urea applied at pre-sowing, 20% PCU and 20% urea applied at re-greening (M3), and urea applied at four stage (CK, Basal:tillering:jointing:booting=50%:10%:20%:20%). In addition, M4-M6, which reduced N by 10%, 20% and 30% respectively based on M3, were designed in 2019-2021 to explore their potential for N-saving and efficiency-improving. The results showed that, compared with CK, M1 did not significantly reduce yield, but decreased the average N recovery efficiency (NRE) and benefits by 1.63% and 357.71 CNY ha-1 in the four years, respectively. M2 and M3 promoted tiller-earing, delayed the decrease of leaf area index (LAI) at milk-ripening stage, and increased dry matter accumulation post-anthesis, thereby jointly increasing spike number and grain weight of wheat, which significantly increased yield and NRE compared with CK in 2017-2021. Due to the savings in N fertilizer costs, M3 achieved the highest economic benefits. With the 20% N reduction, M5 increased NRE by 16.95% on average while decreasing yield and net benefit by only 6.39% and 7.40% respectively, compared with M3. Although NRE could continue to increase, but the yield and benefits rapidly decreased after N reduction exceeds 20%. These results demonstrate that twice-split application of PCU combined with urea is conducive to achieving a joint increase in yield, NRE, and benefits. More importantly, it can also significantly improve the NRE without losing yield and benefits while saving 20% N input.

9.
Front Cell Infect Microbiol ; 14: 1258246, 2024.
Article in English | MEDLINE | ID: mdl-38362497

ABSTRACT

Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.


Subject(s)
Pulmonary Fibrosis , Humans , Alveolar Epithelial Cells , Extracellular Matrix , Fibroblasts , Metabolome , Lung
11.
Front Immunol ; 15: 1326859, 2024.
Article in English | MEDLINE | ID: mdl-38361935

ABSTRACT

The central nervous system (CNS) harbors its own special immune system composed of microglia in the parenchyma, CNS-associated macrophages (CAMs), dendritic cells, monocytes, and the barrier systems within the brain. Recently, advances in the immune cells in the CNS provided new insights to understand the development of tuberculous meningitis (TBM), which is the predominant form of Mycobacterium tuberculosis (M.tb) infection in the CNS and accompanied with high mortality and disability. The development of the CNS requires the protection of immune cells, including macrophages and microglia, during embryogenesis to ensure the accurate development of the CNS and immune response following pathogenic invasion. In this review, we summarize the current understanding on the CNS immune cells during the initiation and development of the TBM. We also explore the interactions of immune cells with the CNS in TBM. In the future, the combination of modern techniques should be applied to explore the role of immune cells of CNS in TBM.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Central Nervous System/pathology , Brain/pathology , Microglia/pathology
12.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38199251

ABSTRACT

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Subject(s)
Chalcones , Melanoma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Melanoma/metabolism , Cell Differentiation , Wnt Signaling Pathway , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Cell Movement , Cell Line, Tumor
13.
Trends Cell Biol ; 34(5): 355-359, 2024 May.
Article in English | MEDLINE | ID: mdl-38242774

ABSTRACT

The critical redox cofactor NAD+ was recently reported to serve as an RNA cap in both eukaryotes and prokaryotes. However, its reversible regulation and biological functions remain unclear. Here, we provide insights into its discovery, capping and decapping mechanisms, for further discovery of their potential functional implications.


Subject(s)
NAD , RNA Caps , NAD/metabolism , RNA Caps/metabolism , Humans , Animals
14.
Sleep ; 47(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37638817

ABSTRACT

STUDY OBJECTIVES: Mounting evidence indicated the correlation between sleep and cerebral small vessel disease (CSVD). However, little is known about the exact causality between poor sleep and white matter injury, a typical signature of CSVD, as well as the underlying mechanisms. METHODS: Spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats were subjected to sleep fragmentation (SF) for 16 weeks. The effects of chronic sleep disruption on the deep white matter and cognitive performance were observed. RESULTS: SHR were validated as a rat model for CSVD. Fragmented sleep induced strain-dependent white matter abnormalities, characterized by reduced myelin integrity, impaired oligodendrocytes precursor cells (OPC) maturation and pro-inflammatory microglial polarization. Partially reversible phenotypes of OPC and microglia were observed in parallel following sleep recovery. CONCLUSIONS: Long-term SF-induced pathological effects on the deep white matter in a rat model of CSVD. The pro-inflammatory microglial activation and the block of OPC maturation may be involved in the mechanisms linking sleep to white matter injury.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Rats , Animals , Sleep Deprivation , Rats, Inbred SHR , Sleep , Rats, Inbred WKY , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology
15.
Front Plant Sci ; 14: 1271325, 2023.
Article in English | MEDLINE | ID: mdl-37929166

ABSTRACT

High loss and low nitrogen (N) efficiency in agricultural production is severe. Also, ammonia volatilization and N leaching aggravated environmental pollution. The eutrophication of surface water and the emissions of N2O increased, hence green fertilization management urgently needs to be rationalized. Coordinating N supply from different sources has been shown to reduce environmental pollution. Therefore, this study was dedicated to clarifying the transport of N sources in the rice-wheat rotation system. The stable isotope tracer technology was used to label fertilizer (F), soil (T), and straw (J) with 15N, respectively. The utilization of N by crops (the N ratio in organs), as well as the residual N in soil and loss status, were measured. According to the potential of response to N, all the wheat cultivars were divided into groups with high (HNV) and low efficiency (LNV). The N contribution ratio showed that 43.28%~45.70% of total N accumulation was from T, while 30.11%~41.73% and 13.82%~24.19% came from F and J. The trend in soil N residue (T > F > J) was consistent with the above, while it was the opposite in N loss (T< F< J). The seasonal effectiveness showed that T achieved the highest N utilization efficiency (31.83%~44.69%), followed by F (21.05%~39.18%) and J (11.02%~16.91%). The post-season sustainability showed that T decreased the most in soil N residue (2.08%~12.53%), and F decreased the most in N accumulation (9.64%~18.13%). However, J showed an increase in N recovery rate (2.87%~5.89%). N translocation and distribution showed that N from different sources in grains was significantly higher than that in stems, glumes, and leaves. The ratio of HNV (75.14%~79.62%) was higher than that of LNV (71.90%~74.59%) in grain, while it was the opposite in other organs. Plant N accumulation, soil N supply, and straw N transformation were determined jointly by the three N sources, thus reducing N loss and N2O production. Therefore, the results will highlight the insights for constructing local N and emission reduction models.

16.
Eur J Pharmacol ; 957: 176035, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37657741

ABSTRACT

Prostate cancer (PCa) is the most frequently diagnosed cancer among men and the second leading cause of death in Western countries. Clinically, screening drugs and develop developing new therapeutics to treat PCa is of great significance. In this study, BML-275 was demonstrated to exert potent antitumor effects in PCa by antagonizing mTOR activity. In cultured PCa cells, BML-275 treatment reduced the expression levels of c-Myc and survivin, promoted the activation of p53, and thereby induced p21/cyclin D1/CDK4/6-dependent cell cycle G1/S arrest. As a result, BML-275 inhibited cellular proliferation and induced mitochondrial-mediated apoptosis. In addition, BML-275 treatment triggered autophagy. Interestingly, EACC-mediated suppression of autophagy did not affect BML-275-induced proliferation and apoptosis. Nude mouse tumorigenic experiments also confirmed that BML-275 inhibited PCa growth, induced PCa cell apoptosis and autophagy. Mechanistically, the activities of PI3K/AKT and AMPK pathways were downregulated by BML-275 treatment in vitro and in vivo. Importantly, mTOR, a common downstream negative protein of PI3K/AKT and AMPK signaling, was induced to inactivate, which may be associated with the induction of apoptosis and autophagy. The pharmacological activation of mTOR by MHY1485 abolished the induction of apoptosis and autophagy of BML-275. Molecular docking results showed that BML-275 can bind to the FKRP12-rapamycin binding site on mTOR protein, and thereby may have the same inhibitory activity on mTOR as rapamycin. Thus, these findings indicated that BML-275 induces mitochondrial-mediated apoptosis and autophagy in PCa by targeting mTOR inhibition. BML-275 may be a potential candidate for the treatment of PCa.


Subject(s)
AMP-Activated Protein Kinases , Prostatic Neoplasms , Male , Animals , Mice , Humans , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Prostatic Neoplasms/drug therapy , Apoptosis , TOR Serine-Threonine Kinases , Autophagy
18.
J Appl Biomed ; 21(3): 137-149, 2023 09.
Article in English | MEDLINE | ID: mdl-37747313

ABSTRACT

Myocardial hypertrophy may lead to heart failure and sudden death. As traditional Chinese medicine, Guanxinning tablets (GXN) have significant pharmacological effects in the prevention and treatment of cardiovascular diseases. However, the anti-cardiac hypertrophy efficacy of GXN and its mechanism of action are still unclear. Therefore, we established a heart failure rat model and isolated primary cardiomyocytes of neonatal rat to observe the protective effect of GXN on heart failure rat model and the intervention effect on myocardial cell hypertrophy, and to explore the possible mechanism of GXN preventing and treating myocardial hypertrophy. The results of in vivo experiments showed that GXN could significantly reduce the degree of cardiac hypertrophy, reduce the size of cardiomyocytes, inhibit the degree of myocardial remodeling and fibrosis, and improve cardiac function in rats with early heart failure. The results of in vitro experiments showed that GXN was safe for primary cardiomyocytes and could improve cardiomyocyte hypertrophy and reduce the apoptosis of cardiomyocytes in pathological state, which may be related to the inhibition of the over-activation of MEK-ERK1/2 signaling pathway. In conclusion, GXN may inhibit cardiac hypertrophy and improve early heart failure by inhibiting the over-activation of MEK-ERK1/2 signaling pathway.


Subject(s)
Heart Failure , MAP Kinase Signaling System , Animals , Rats , Signal Transduction , Heart Failure/drug therapy , Tablets , Cardiomegaly/drug therapy , Mitogen-Activated Protein Kinase Kinases
19.
ACS Nano ; 17(17): 16870-16878, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37646337

ABSTRACT

Due to the dynamic nature of ester linkages, ester-bond-containing materials are well known for their outstanding degradability and stimuli responsiveness. However, whether ester hydrolysis is affected by mechanical forces remains unclear. Here, we develop a single-molecule assay to quantitatively study the force-dependent ester hydrolysis using an engineered circular permutant protein with a caged ester bond as a model. Our single-molecule force spectroscopy results show that the ester hydrolysis rate is surprisingly insensitive to forces, with a ∼7 s-1 dissociation rate that remains almost unchanged in the force range of 80 to 200 pN. Quantum calculations reveal that the ester hydrolysis involves an intermediate state formed by either H3O+- or OH--bonded tetrahedral intermediates. The measured ester-hydrolysis kinetics at the single-molecule level may primarily correspond to the rupture of these intermediate states. However, the rate-limiting step appears to be the formation of the tetrahedral intermediates, which cannot be quantitatively characterized in our experiments. Nonetheless, based on the quantum calculations, this step is also insensitive to applied forces. Altogether, our study suggests that the ester bond is chemically labile yet mechanically stable, serving as the basis for the design of responsive materials using ester bonds as mechanically inert units.

20.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445957

ABSTRACT

Hydrogels are soft materials constructed of physically or chemically crosslinked polymeric net-works with abundant water. The crosslinkers, as the mechanophores that bear and respond to mechanical forces, play a critical role in determining the mechanical properties of hydrogels. Here, we use a polyprotein as the crosslinker and mechanophore to form covalent polymer hydrogels in which the toughness and fatigue fracture are controlled by the mechanical unfolding of polyproteins. The protein Parvimonas sp. (ParV) is super stable and remains folded even at forces > 2 nN; however, it can unfold under loading forces of ~100 pN at basic pH values or low calcium concentrations due to destabilization of the protein structures. Through tuning the protein unfolding by pH and calcium concentrations, the hydrogel exhibits differences in modulus, strength, and anti-fatigue fracture. We found that due to the partially unfolding of ParV, the Young's modulus decreased at pH 9.0 or in the presence of EDTA (Ethylene Diamine Tetraacetic Acid), moreover, because partially unfolded ParV can be further completely unfolded due to the mechanically rupture of ester bond, leading to the observed hysteresis of the stretching and relaxation traces of the hydrogels, which is in line with single-molecule force spectroscopy experiments. These results display a new avenue for designing pH- or calcium-responsive hydrogels based on proteins and demonstrate the relationship between the mechanical properties of single molecules and macroscopic hydrogel networks.


Subject(s)
Calcium , Hydrogels , Hydrogels/chemistry , Mechanical Phenomena , Proteins , Polyproteins , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...