Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nanoscale ; 14(39): 14645-14660, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36165075

ABSTRACT

Nuclear targeted delivery has great potential in improving the efficiency of non-viral carrier mediated genome editing. However, direct and efficient delivery of CRISPR/Cas9 plasmid into the nucleus remains a challenge. In this study, a nuclear targeted gene delivery platform based on fluorescent carbon quantum dots (CQDs) was developed. Polyethylenimine (PEI) and polyethylene glycol (PEG) synergistically passivated the surface of CQDs, providing an excitation-independent green-emitting fluorescent CQDs-PEI-PEG conjugate (CQDs-PP) with an ultra-small size and positive surface charge. Here we show that CQDs-PP could bind CRISPR/Cas9 plasmid to form a nano-complex by electrostatic attraction, which can bypass lysosomes and enter the nucleus by passive diffusion, and thereby improve the transfection efficiency. Also, CQDs-PP could deliver CRISPR/Cas9 plasmid into HeLa cells, resulting in the insertion/deletion mutation of the target EFHD1 gene. More importantly, CQDs-PP exhibited a considerably higher gene editing efficiency as well as comparable or lower cytotoxicity relative to Lipo2000 and PEI-passivated CQDs-PEI (CQDs-P). Thus, the nuclear-targeted CQDs-PP is expected to constitute an efficient CRISPR/Cas9 delivery carrier in vitro with imaging-trackable ability.


Subject(s)
CRISPR-Cas Systems , Quantum Dots , Carbon , HeLa Cells , Humans , Polyethylene Glycols , Polyethyleneimine
2.
Thyroid ; 32(4): 429-439, 2022 04.
Article in English | MEDLINE | ID: mdl-34927457

ABSTRACT

Background: Graves' eye disease, also called Graves' orbitopathy (GO), is a potentially debilitating autoimmune disease associated with retro-orbital inflammation and tissue expansion, involving both fibroblasts and adipocytes, resulting in periorbital edema, worsening proptosis, and muscle dysfunction with diplopia and may ultimately threaten sight. Accumulating evidence has indicated that autoantibodies to the thyrotropin receptor (TSHR), which induce the hyperthyroidism of Graves' disease, also help mediate the pathogenesis of the eye disease in susceptible individuals through TSHR expression on retro-orbital cells. Since it has long been known that the effects of insulin-like growth factor 1 (IGF-1) and thyrotropin are additive, recent clinical trials with a human monoclonal IGF-1 receptor blocking antibody (teprotumumab; IGF-1R-B-monoclonal antibody [mAb]) have demonstrated its ability to induce significant reductions in proptosis, diplopia, and clinical activity scores in patients with GO. However, the molecular mechanisms by which such an antibody achieves this result is unclear. Methods: We have used Li-Cor In-Cell Western, Western blot, and immunohistochemistry to define levels of different proteins in mouse and human fibroblast cells. Proteomic array was also used to define pathway signaling molecules. Using CCK-8 and BrdU cell proliferation ELISA, we have analyzed proliferative response of these cells to different antibodies. Results: We now show that a stimulating TSHR antibody was able to induce phosphorylation of the IGF-1R and initiate both TSHR and IGF-1R signaling in mouse and human fibroblasts. IGF-1R-B-mAb (1H7) inhibited all major IGF-1R signaling cascades and also reduced TSHR signaling. This resulted in the antibody-induced suppression of autophagy as shown by inhibition of multiple autophagy-related proteins (Beclin1, LC3a, LC3b, p62, and ULK1) and the induction of cell death by apoptosis as evidenced by activation of cleaved caspase 3, FADD, and caspase 8. Furthermore, this IGF-1R-blocking mAb suppressed serum-induced perkin and pink mitophagic proteins. Conclusions: Our observations clearly indicated that stimulating TSHR antibodies were able to enhance IGF-1R activity and contribute to retro-orbital cellular proliferation and inflammation. In contrast, an IGF-1R-B-mAb was capable of suppressing IGF-1R signaling leading to retro-orbital fibroblast/adipocyte death through the cell-extrinsic pathway of apoptosis. This is likely the major mechanism involved in proptosis reduction in patients with Graves' eye disease treated by IGF-1R inhibition.


Subject(s)
Graves Disease , Graves Ophthalmopathy , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Apoptosis , Diplopia , Fibroblasts , Graves Ophthalmopathy/metabolism , Humans , Immunoglobulins, Thyroid-Stimulating/metabolism , Inflammation/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Proteomics , Receptor, IGF Type 1/metabolism , Receptors, Thyrotropin , Thyrotropin/metabolism
3.
Front Endocrinol (Lausanne) ; 12: 706101, 2021.
Article in English | MEDLINE | ID: mdl-34276566

ABSTRACT

The synergistic activation of transcription factors can lead to thyroid progenitor cell speciation. We have previously shown in vitro that mouse or human stem cells, expressing the transcription factors NKx2-1 and Pax8, can differentiate into thyroid neo-follicular structures (TFS). We now show that syngeneic mouse TFS when implanted into hypothyroid TSH receptor knockout (TSHR-KO) mice can ameliorate the hypothyroid state for an extended period. ES cells derived from heterozygous TSHR-KO blastocysts were stably transfected with Nkx2-1-GFP and Pax8-mcherry constructs and purified into 91.8% double positive cells by flow cytometry. After 5 days of activin A treatment these double positive cells were then induced to differentiate into neo-follicles in Matrigel for 21 days in the presence of 500µU/mL of TSH. Differentiated TFS expressing thyroglobulin mRNA were implanted under the kidney capsule of 4-6 weeks old TSHR-KO mice (n=5) as well as hind limb muscle (n=2) and anterior chamber of one eye (n=2). Five of the mice tested after 4 weeks were all rendered euthyroid and all mice remained euthyroid at 20 weeks post implantation. The serum T4 fully recovered (pre-bleed 0.62 ± 0.03 to 8.40 ± 0.57 µg/dL) and the previously elevated TSH became normal or suppressed (pre-bleed 391 ± 7.6 to 4.34 ± 1.25 ng/dL) at the end of the 20 week observation period. The final histology obtained from the implanted kidney tissues showed only rudimentary thyroid follicular structures but which stained positive for thyroglobulin expression. The presence of only rudimentary structures at the site of implant on these extended animals suggested possible migration of cells from the site of implant or an inability of TFCs to maintain proper follicular morphology in these external sites for extended periods. However, there were no signs of tumor formation and no immune infiltration. These preliminary studies show that TSHR-KO mice are a useful model for orthotropic implantation of functional thyroid cells without the need for thyroidectomy, radioiodine ablation or anti thyroid drug control of thyroid function. This approach is also proof of principle that thyroid cells derived from mouse ES cells are capable of surviving as functional neo-follicles in vivo for an extended period of 20 weeks.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Hypothyroidism/therapy , Receptors, Thyrotropin/physiology , Stem Cell Transplantation/methods , Stem Cells/cytology , Thyroid Gland/cytology , Animals , Female , Hypothyroidism/etiology , Hypothyroidism/metabolism , Hypothyroidism/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Thyroid Function Tests
4.
Thyroid ; 31(8): 1151-1159, 2021 08.
Article in English | MEDLINE | ID: mdl-33678005

ABSTRACT

Background: The development of the thyroid follicular cell has been well characterized as it progresses from the original stem cell, either embryonic or adult, through a series of transitions to form a differentiated and functional thyroid cell. Summary: In this review, we briefly outline what is known about this transitional process with emphasis on characterizing the thyroid progenitor stem cell by using data obtained from both in vitro and in vivo studies and both mouse and human cells. It is of particular importance to note the influence of independent factors that guide the transcriptional control of the developing thyroid cell as it is subjected to extracellular signals, often working via epigenetic changes, and initiating intrinsic transcriptional changes leading to a functional cell. Conclusion: Thyroid stem cells fall into the category of dispositional stem cells and are greatly influenced by their environment.


Subject(s)
Stem Cells/physiology , Thyroid Epithelial Cells/physiology , Thyroid Gland/cytology , Thyroid Gland/diagnostic imaging , Animals , Humans , Mice
5.
Article in English | MEDLINE | ID: mdl-32760346

ABSTRACT

Background: The success in rescuing thyroid deficiency in mice using thyroid cells derived from embryonic stem (ES) cells, together with the discovery of human induced pluripotent stem cells (iPSCs) from somatic cells, has raised the possibility of patient-specific thyroid cell replacement. In this study we demonstrate that human thyroid follicular cells can be derived from human iPSCs and show the ability of highly purified and differentiated cells to secrete thyroid hormone. Research Design and Methods: Human iPSCs were derived from adult skin fibroblasts using RNA reprogramming and differentiated in vitro into thyroid follicular cells by exposure to activin A, ethacridine and TSH as we have previously described for human ES cells. The resulting thyroid cells were then highly purified using double antibody cell sorting. Results: The iPSCs derived from human dermal fibroblasts showed stem cell-like morphologic changes and expressed pluripotent stem cell markers as assessed using qPCR, immunofluorescence staining, and FACS analysis. These cells retained their pluripotential characteristics as shown by teratoma formation after murine transplantation. Definitive endoderm cells were induced with activin A and the transcription factor TAZ was significantly induced on ethacridine treatment and translocated to the nucleus. Thyroid transcription factors NKX2-1 and PAX8 were also highly expressed in activin A derived endoderm cells and further induced by ethacridine. Following terminal differentiation with TSH, there was enhanced thyroid follicle formation, high expression of the thyroid specific genes-TG, TPO, TSHR and NIS, and secretion of thyroid hormone (T4) in vitro. Furthermore, we were able to achieve a 97% purification of TSHR+/NIS+ expressing cells after differentiation using a single purification procedure. Conclusions: These findings demonstrate that mature adult dermal fibroblasts can be matured into human iPSCs which have the potential to form functional thyroid follicular cells. This lays the groundwork for future person-specific thyroid regenerative therapy.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Fibroblasts/cytology , Human Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Teratoma/pathology , Thyroid Epithelial Cells/cytology , Animals , Fibroblasts/metabolism , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Nude , Middle Aged , Teratoma/metabolism , Thyroid Epithelial Cells/metabolism
6.
Mikrochim Acta ; 187(9): 484, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32757083

ABSTRACT

Silver nanoparticle (Ag NP)-coated carbon quantum dot (CQD) core-shell-structured nanocomposites (CQD@Ag NCs) were developed for fluorescent imaging of intracellular superoxide anion (O2•-). The morphology of CQD@Ag NCs was investigated by transmission electron microscopy, and the composition was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. CQDs display blue fluorescence with excitation/emission maxima at 360/440 nm, and the fluorescence was quenched by Ag NPs in CQD@Ag NCs. In the presence of O2•-, Ag NPs were oxide-etched and the fluorescence of CQDs was recovered. A linearity between the relative fluorescence intensity and O2•- solution concentration within the range 0.6 to 1.6 µM was found, with a detection limit of 0.3 µM. Due to their high sensitivity, selectivity, and low cytotoxicity, the as-synthesized CQD@Ag NCs have been successfully applied for imaging of O2•- in MCF-7 cells during the whole process of autophagy induced by serum starvation. In our perception, the developed method provides a cost-effective, sensitive, and selective tool in bioimaging and monitoring of intracellular O2•- changes, and is promising for potential biological applications. Graphical abstract Illustration of the synthesis of carbon quantum Dot@Silver nanocomposites (CQD@Ag NCs), and CQD@Ag NCs as a "turn-on" nanoprobe for fluorescent imaging of intracellular superoxide anion.


Subject(s)
Fluorescent Dyes/chemistry , Nanocomposites/chemistry , Quantum Dots/chemistry , Superoxides/analysis , Carbon/chemistry , Carbon/radiation effects , Carbon/toxicity , Fluorescent Dyes/radiation effects , Fluorescent Dyes/toxicity , Humans , Limit of Detection , MCF-7 Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Metal Nanoparticles/toxicity , Microscopy, Fluorescence , Nanocomposites/radiation effects , Nanocomposites/toxicity , Quantum Dots/radiation effects , Quantum Dots/toxicity , Silver/chemistry , Silver/radiation effects , Silver/toxicity , Ultraviolet Rays
7.
Article in English | MEDLINE | ID: mdl-32676053

ABSTRACT

G protein coupled receptors (GPCRs) can lead to G protein and non-G protein initiated signals. By virtue of its structural property, the TSH receptor (TSHR) has a unique ability to engage different G proteins making it highly amenable to selective signaling. In this study, we describe the identification and characterization of a novel small molecule agonist to the TSHR which induces primary engagement with Gαq/11. To identify allosteric modulators inducing selective signaling of the TSHR we used a transcriptional-based luciferase assay system with CHO-TSHR cells stably expressing response elements (CRE, NFAT, SRF, or SRE) that were capable of measuring signals emanating from the coupling of Gαs , Gαq/11, Gßγ, and Gα12/13, respectively. Using this system, TSH activated Gαs , Gαq/11, and Gα12/13 but not Gßγ. On screening a library of 50K molecules at 0.1,1.0 and 10 µM, we identified a novel Gq/11 agonist (named MSq1) which activated Gq/11 mediated NFAT-luciferase >4 fold above baseline and had an EC50= 8.3 × 10-9 M with only minor induction of Gαs and cAMP. Furthermore, MSq1 is chemically and structurally distinct from any of the previously reported TSHR agonist molecules. Docking studies using a TSHR transmembrane domain (TMD) model indicated that MSq1 had contact points on helices H1, H2, H3, and H7 in the hydrophobic pocket of the TMD and also with the extracellular loops. On co-treatment with TSH, MSq1 suppressed TSH-induced proliferation of thyrocytes in a dose-dependent manner but lacked the intrinsic ability to influence basal thyrocyte proliferation. This unexpected inhibitory property of MSq1 could be blocked in the presence of a PKC inhibitor resulting in derepressing TSH induced protein kinase A (PKA) signals and resulting in the induction of proliferation. Thus, the inhibitory effect of MSq1 on proliferation resided in its capacity to overtly activate protein kinase C (PKC) which in turn suppressed the proliferative signal induced by activation of the predomiant cAMP-PKA pathway of the TSHR. Treatment of rat thyroid cells (FRTL5) with MSq1 did not show any upregulation of gene expression of the key thyroid specific markers such as thyroglobulin(Tg), thyroid peroxidase (Tpo), sodium iodide symporter (Nis), and the TSH receptor (Tshr) further suggesting lack of involvement of MSq1 and Gαq/11 activation with cellular differentation. In summary, we identified and characterized a novel Gαq/11 agonist molecule acting at the TSHR and which showed a marked anti-proliferative ability. Hence, Gq biased activation of the TSHR is capable of ameliorating the proliferative signals from its orthosteric ligand and may offer a therapeutic option for thyroid growth modulation.


Subject(s)
GTP-Binding Proteins/metabolism , Receptors, Thyrotropin/metabolism , Signal Transduction , Animals , CHO Cells , Cell Proliferation , Cricetulus , GTP-Binding Proteins/agonists , Molecular Docking Simulation , Protein Binding , Thyroid Epithelial Cells/metabolism
8.
Thyroid ; 30(11): 1666-1675, 2020 11.
Article in English | MEDLINE | ID: mdl-32345138

ABSTRACT

Objective: It has been demonstrated that the transcription factors TAZ (transcriptional coactivator with PDZ-binding motif), paired box gene 8 (PAX8), and NK2 homeobox 1 (NKX2-1) are coexpressed in the nucleus of thyroid cells. Furthermore, TAZ is known to enhance the transcriptional activity of PAX8 and NKX2-1 as well as the key thyroid-specific gene, thyroglobulin (TG), suggesting a critical role for TAZ in the control of thyroid cell speciation. We previously reported that the small molecule ethacridine, identified as a TAZ activator, was able to induce thyroid-specific transcription in endodermal cells differentiated from human embryonic stem (hES) cells using activin A. Since transcription factors are epigenetically regulated in cell differentiation, we investigated the epigenetic changes in the promoter regions of these key transcription factors during in vitro differentiation of hES cells into thyrocytes. Methods: We initially profiled chromatin accessibility using the technique of Assay for Transposase Accessible Chromatin sequencing (ATAC-seq), and then examined DNA methylation and histone acetylation in the promoter regions of the three selected thyroid transcription factors and the thyroid-specific genes during hES cell differentiation. Results: ATAC-seq analysis showed enriched chromatin accessibility of TAZ, NKX2-1, and PAX8 after exposure to activin A and ethacridine. There were no methylation changes found in the NKX2-1, PAX8, and TAZ promoters by bisulfite sequencing. In contrast, acetylation of histone H4, specifically acetylation of lysine 16, was observed in each of the promoters when measured by chromatin immunoprecipitation polymerase chain reaction assays, which correlated with the activity and expression of NKX2-1 and PAX8 as well as sodium/iodide symporter, thyroid stimulating hormone receptor, and TG genes. Conclusions: These results indicate that ethacridine treatment of activin A-derived endodermal hES cells leads to enhanced chromatin accessibility, which, in turn, allows histone H4 acetylation in the regulation of active genes for speciation of thyroid follicular cells from hES cells.


Subject(s)
Cell Differentiation , DNA Methylation , Epigenesis, Genetic , Thyroid Gland/cytology , Thyroid Gland/immunology , Activins/metabolism , Chromatin/chemistry , Ethacridine/pharmacology , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , Intracellular Signaling Peptides and Proteins/genetics , Lysine , PAX8 Transcription Factor/biosynthesis , PAX8 Transcription Factor/genetics , Promoter Regions, Genetic , Sequence Analysis, DNA , Thyroid Epithelial Cells/cytology , Thyroid Nuclear Factor 1/biosynthesis , Thyroid Nuclear Factor 1/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins
9.
Front Endocrinol (Lausanne) ; 11: 606269, 2020.
Article in English | MEDLINE | ID: mdl-33551997

ABSTRACT

Background: Many tissues, including the thyroid, contain resident (adult) stem cells that are responsible for regeneration and repair after injury. The mechanisms of thyroid regeneration and the role of thyroid stem cells and thyroid progenitor cells in this process are not well understood. We have now used a new mouse thyroid injury model to gain insight into this phenomenon. Methods: Tamoxifen induced TPO-Cre mice (TPOCreER2) were crossed with inducible Diphtheria Toxin Receptor homozygous mice (ROSA26iDTR) to give rise to TPOCreER2/iDTR mice, allowing for the Cre-mediated expression of the DTR and rendering TPO expressing thyroid cells highly sensitive to diphtheria toxin (DT). This model of TPOCreER2/iDTR mice allowed us to study the repair/regeneration of thyroid follicles after diphtheria toxin induced thyroid damage by measuring serum thyroid hormones and cell fate. Results: In TPOCreER2/iDTR double transgenic mice we observed severe thyroid damage as early as 2 weeks after initiating intraperitoneal DT injections. There was marked thyroid tissue apoptosis and a ~50% drop in serum T4 levels (from 5.86 to 2.43 ug/dl) and a corresponding increase in serum TSH (from 0.18 to 8.39 ng/dl). In addition, there was a ~50% decrease in transcription of thyroid specific genes (thyroglobulin, TSH receptor, and sodium-iodide symporter). After suspending the DT administration, the thyroid rapidly recovered over a 4-week period during which we observed a transient surge in stem cell marker expression (including Oct4, Nanog, Sox2, and Rex1). In addition, cells immunostaining with stem cell markers Oct4 and Ssea-1 were found in clusters around new thyroid follicles in TPOCreER2/iDTR double transgenic mice. Furthermore, the presence of clusters of thyroid progenitor cells was also identified by Pax8 staining of thyroglobulin negative cells. This recovery of the injured gland was followed by a rapid and sequential restoration of thyroid function. Conclusion: These data demonstrate that a new model of thyroid cell damage induced by DT can be used to study the mobilization of resident adult stem cells. Furthermore, the model clearly demonstrates the involvement of both stem and progenitor cells in the in vivo regeneration of the thyroid after severe destruction.


Subject(s)
Regeneration , Stem Cells , Thyroid Gland/growth & development , Animals , Diphtheria Toxin/pharmacology , Gene Expression Regulation/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Mice , Mice, Transgenic , Tamoxifen/pharmacology , Thyroid Diseases/chemically induced , Thyroid Diseases/therapy , Thyroid Function Tests , Thyroid Gland/cytology , Thyroid Hormones/metabolism
10.
Thyroid ; 29(7): 993-1002, 2019 07.
Article in English | MEDLINE | ID: mdl-31025602

ABSTRACT

Background: Graves' disease is associated with thyrotropin receptor (TSHR) antibodies of variable bioactivity. Recently, antibodies have been characterized that bind to the cleavage region of the TSHR ectodomain (C-TSHR-Ab), and their ability to induce thyroid cell apoptosis in vitro via excessive cell stress involving multiple organelles was demonstrated. Methods: To investigate the in vivo effects of C-TSHR-Ab, first a murine monoclonal antibody (mAb) directed against residues 337 to 356 of the TSHR cleavage region was developed, and then it was injected into mice. Results: These injections caused reduced serum total triiodothyronine and thyroxine and increased TSH levels compared to control mAb-injected mice. The C-TSHR-mAb induced histological evidence of endoplasmic reticulum stress, mitochondrial stress, and apoptosis in the thyroid glands. C-TSHR-mAb-mediated apoptosis was associated with cellular infiltrates consisting mostly of macrophages, dendritic cells, and neutrophils, while T- and B-lymphocytes were scarce. In addition, in the treated mouse thyroid tissue, hyper-citrullination of histone H3 was also found. This is known to occur via peptidylarginine deiminase 4 and plays an important role in the formation of neutrophil extracellular traps, which are likely to be partly responsible for thyroid infiltration, as seen in many autoimmune diseases. Examination of thyroid tissue from patients with Graves' disease also showed increased stress and some thyrocyte apoptosis compared to normal thyroid tissues. Conclusions: The fact that the C-TSHR-mAb induced accumulation of macrophages, neutrophils, and dendritic cells indicates that innate immunity plays a central role in shaping the adaptive immune response to the TSHR. In addition, this study provides further evidence that the hinge region of the TSHR ectodomain is intimately involved in the immune response in autoimmune thyroid disease.


Subject(s)
Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Mitochondria/drug effects , Receptors, Thyrotropin/immunology , Thyroid Epithelial Cells/drug effects , Animals , Cell Survival , DNA Damage , Humans , Mice , Mitochondria/metabolism , Protein Domains , Rats , Reactive Oxygen Species/metabolism , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyrotropin/drug effects , Thyrotropin/metabolism , Thyroxine/drug effects , Thyroxine/metabolism , Triiodothyronine/drug effects , Triiodothyronine/metabolism
11.
Endocrinology ; 160(5): 1008-1020, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30822352

ABSTRACT

The TSH receptor (TSHR) is the major autoantigen in Graves' disease (GD). Bioinformatic analyses predict the existence of several human TSHR isoforms from alternative splicing, which can lead to the coexpression of multiple receptor forms. The most abundant of these is TSHRv1.3. In silico modeling of TSHRv1.3 demonstrated the structural integrity of this truncated receptor isoform and its potential binding of TSH. Tissue profiling revealed wide expression of TSHRv1.3, with a predominant presence in thyroid, bone marrow, thymus, and adipose tissue. To gain insight into the role of this v1.3 receptor isoform in thyroid pathophysiology, we cloned the entire open reading frame into a mammalian expression vector. Immunoprecipitation studies demonstrated that both TSHR-stimulating antibody and human TSH could bind v1.3. Furthermore, TSHRv1.3 inhibited the stimulatory effect of TSH and TSHR-Ab MS-1 antibody on TSHR-induced cAMP generation in a dose-dependent manner. To confirm the antigenicity of v1.3, we used a peptide ELISA against two different epitopes. Of 13 GD samples, 11 (84.6%) were positive for a carboxy terminal peptide and 10 (76.9%) were positive with a junction region peptide. To demonstrate that intracellular v1.3 could serve as an autoantigen and modulate disease, we used double-transfected Chinese hamster ovary cells that expressed both green fluorescent protein (GFP)-tagged TSHRv1.3 and full-length TSHR. We then induced cell stress and apoptosis using a TSHR monoclonal antibody and observed the culture supernatant contained v1.3-GFP protein, demonstrating the release of the intracellular receptor variant by this mechanism.


Subject(s)
Autoantibodies/immunology , Autoantigens/metabolism , Graves Disease/metabolism , Immunoglobulins, Thyroid-Stimulating/metabolism , Receptors, Thyrotropin/metabolism , Amino Acid Sequence , Animals , Autoantibodies/metabolism , Base Sequence , CHO Cells , Cricetinae , Cricetulus , Graves Disease/genetics , Graves Disease/immunology , HEK293 Cells , Humans , Immunoglobulins, Thyroid-Stimulating/immunology , Molecular Dynamics Simulation , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/immunology , Thyrotropin/chemistry , Thyrotropin/metabolism
12.
Sci Signal ; 11(514)2018 01 23.
Article in English | MEDLINE | ID: mdl-29363585

ABSTRACT

The thyroid-stimulating hormone receptor (TSHR) is a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR). Autoimmune hyperthyroidism, commonly known as Graves' disease (GD), is caused by stimulating autoantibodies to the TSHR. We previously described TSHR-specific antibodies (TSHR-Abs) in GD that recognize linear epitopes in the cleavage region of the TSHR ectodomain (C-TSHR-Abs) and induce thyroid cell apoptosis instead of stimulating the TSHR. We found that C-TSHR-Abs entered the cell through clathrin-mediated endocytosis but did not trigger endosomal maturation and failed to undergo normal vesicular sorting and trafficking. We found that stimulating TSHR-Abs (S-TSHR-Abs) activated Gαs and, to a lesser extent, Gαq but that C-TSHR-Abs failed to activate any of the G proteins normally activated in response to TSH. Furthermore, specific inhibition of G proteins in the presence of S-TSHR-mAbs or TSH resulted in a similar failure of endosomal maturation as that caused by C-TSHR-mAbs. Hence, whereas S-TSHR-mAbs and TSH contributed to normal vesicular trafficking of TSHR through the activation of major G proteins, the C-TSHR-Abs resulted in GRK2- and ß-arrestin-1-dependent biased signaling, which is interpreted as a danger signal by the cell. Our observations suggest that the binding of antibodies to different TSHR epitopes may decrease cell survival. Antibody-induced cell injury and the response to cell death amplify the loss of self-tolerance, which most likely helps to perpetuate GPCR-mediated autoimmunity.


Subject(s)
Antibodies, Monoclonal/pharmacology , Autoantibodies/immunology , Autoimmunity/immunology , Immunoglobulins, Thyroid-Stimulating/immunology , Receptors, Thyrotropin/immunology , Thyroid Epithelial Cells/cytology , Animals , Apoptosis , Cell Proliferation , Cell Survival , Cells, Cultured , Endocytosis , GTP-Binding Proteins/metabolism , Rats , Thyroid Epithelial Cells/immunology , Thyroid Epithelial Cells/metabolism , beta-Arrestins/metabolism
13.
Article in English | MEDLINE | ID: mdl-30666231

ABSTRACT

The TSH receptor (TSHR) hinge region was previously considered an inert scaffold connecting the leucine-rich ectodomain to the transmembrane region of the receptor. However, mutation studies have established the hinge region to be an extended hormone-binding site in addition to containing a region which is cleaved thus dividing the receptor into α | ' (A) and ß (B) subunits. Furthermore, we have shown in-vitro that monoclonal antibodies directed to the cleaved part of the hinge region (often termed "neutral" antibodies) can induce thyroid cell apoptosis in the absence of cyclic AMP signaling. The demonstration of neutral antibodies in patients with Graves' disease suggests their potential involvement in disease pathology thus making the hinge a potentially important antigenic target. Here we examine the evolution of the antibody immune response to the entire TSHR hinge region (aa280-410) after intense immunization with full-length TSHR cDNA in a mouse (BALB/c) model in order to examine the immunogenicity of this critical receptor structure. We found that TSHR hinge region antibodies were detected in 95% of the immunized mice. The antibody responses were largely restricted to residues 352-410 covering three major epitopes and not merely confined to the cleaved portion. These data indicated the presence of novel antigenic "hotspots" within the carboxyl terminus of the hinge region and demonstrate that the hinge region of the TSHR contains an immunogenic pocket that is involved in the highly heterogeneous immune response to the TSHR. The presence of such TSHR antibodies suggests that they may play an active role in the immune repertoire marshaled against the TSHR and may influence the Graves' disease phenotype.

14.
Thyroid ; 27(2): 292-299, 2017 02.
Article in English | MEDLINE | ID: mdl-27829313

ABSTRACT

OBJECTIVE: The differentiation program for human thyroid follicular cells (TFCs) relies on the interplay between sequence-specific transcription factors and transcriptional co-regulators. Transcriptional co-activator with PDZ-binding motif (TAZ) is a co-activator that regulates several transcription factors, including PAX8 and NKX2-1, which play a central role in thyroid-specific gene transcription. TAZ and PAX8/NKX2-1 are co-expressed in the nuclei of thyroid cells, and TAZ interacts directly with both PAX8 and NKX2-1, leading to their enhanced transcriptional activity on the thyroglobulin (TG) promoter and additional genes. METHODS: The use of a small molecule, ethacridine, recently identified as a TAZ activator, in the differentiation of thyroid cells from human embryonic stem (hES) cells was studied. First, endodermal cells were derived from hES cells using Activin A, followed by induction of differentiation into thyroid cells directed by ethacridine and thyrotropin (TSH). RESULTS: The expression of TAZ was increased in the Activin A-derived endodermal cells by ethacridine in a dose-dependent manner and followed by increases in PAX8 and NKX2-1 when assessed by both quantitative polymerase chain reaction and immunostaining. Following further differentiation with the combination of ethacridine and TSH, the thyroid-specific genes TG, TPO, TSHR, and NIS were all induced in the differentiated hES cells. When these cells were cultured with extracellular matrix-coated dishes, thyroid follicle formation and abundant TG protein expression were observed. Furthermore, such hES cell-derived thyroid follicles showed a marked TSH-induced and dose-dependent increase in radioiodine uptake and protein-bound iodine accumulation. CONCLUSION: These data show that fully functional human thyroid cells can be derived from hES cells using ethacridine, a TAZ activator, which induces thyroid-specific gene expression and promotes thyroid cell differentiation from the hES cells. These studies again demonstrate the importance of transcriptional regulation in thyroid cell development. This approach also yields functional human thyrocytes, without any gene transfection or complex culture conditions, by directly manipulating the transcriptional machinery without interfering with intermediate signaling events.


Subject(s)
Cell Differentiation/drug effects , Ethacridine/pharmacology , Human Embryonic Stem Cells/drug effects , Intracellular Signaling Peptides and Proteins/drug effects , Thyroid Epithelial Cells/drug effects , Thyrotropin/pharmacology , Activins/pharmacology , Autoantigens/drug effects , Autoantigens/genetics , Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/drug effects , Iodide Peroxidase/genetics , Iron-Binding Proteins/drug effects , Iron-Binding Proteins/genetics , PAX8 Transcription Factor/drug effects , PAX8 Transcription Factor/genetics , Receptors, Thyrotropin/drug effects , Receptors, Thyrotropin/genetics , Symporters/drug effects , Symporters/genetics , Thyroglobulin/drug effects , Thyroglobulin/genetics , Thyroid Epithelial Cells/cytology , Thyroid Nuclear Factor 1/drug effects , Thyroid Nuclear Factor 1/genetics , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins
15.
Article in English | MEDLINE | ID: mdl-25954249

ABSTRACT

BACKGROUND: Here, we demonstrate the successful differentiation of induced pluripotent stem (iPS) cells into functional thyroid cells indicating the therapeutic potential of this approach when applied to individuals with thyroid deficiency. RESEARCH DESIGN AND METHODS: Using embryonic murine fibroblasts, we generated iPS cells with a single lentiviral "stem cell cassette" vector and then differentiated these iPS cells into thyroid cells after transfection with PAX8 and NKX2-1 by Activin A and TSH stimulation. RESULTS: The generated iPS cells expressed pluripotent stem cell markers as assessed using both reverse transcription quantitative PCRs and immunofluorescence staining with ~0.5% reprograming efficiency. Compared to control cells, the expression of thyroid-specific genes NIS, TSHR, Tg, and TPO were greatly enhanced in PAX8(+)NKX2-1(+) iPS cells after differentiation. On stimulation with TSH, these differentiated iPS cells were also capable of dose-dependent cAMP generation and radioiodine uptake indicative of functional thyroid epithelial cells. Furthermore, the cells formed three-dimensional follicles in culture, and "thyroid organoids" formed after PAX8(+)NKX2-1(+) iPS cells transplanted into nude mice, and all expressed Tg protein as judged immunohistochemically. Taken together, thyroid epithelial cells differentiated from iPS cells, which were themselves derived from murine fibroblasts, exhibited very similar properties to thyroid cells previously developed from traditional murine embryonic stem cells. CONCLUSION: Thyroid cells differentiated from iPS cells offer the opportunity to examine the detailed transcriptional regulation of thyroid cell differentiation and may provide a useful future source for individualized regenerative cell therapy.

16.
Thyroid ; 25(4): 455-61, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25585054

ABSTRACT

OBJECTIVE: The molecular events that lead to human thyroid cell speciation remain incompletely characterized. It has been shown that overexpression of the regulatory transcription factors Pax8 and Nkx2-1 (ttf-1) directs murine embryonic stem (mES) cells to differentiate into thyroid follicular cells by initiating a transcriptional regulatory network. Such cells subsequently organized into three-dimensional follicular structures in the presence of extracellular matrix. In the current study, human embryonic stem (hES) cells were studied with the aim of recapitulating this scenario and producing functional human thyroid cell lines. METHODS: Reporter gene tagged pEZ-lentiviral vectors were used to express human PAX8-eGFP and NKX2-1-mCherry in the H9 hES cell line followed by differentiation into thyroid cells directed by Activin A and thyrotropin (TSH). RESULTS: Both transcription factors were expressed efficiently in hES cells expressing either PAX8, NKX2-1, or in combination in the hES cells, which had low endogenous expression of these transcription factors. Further differentiation of the double transfected cells showed the expression of thyroid-specific genes, including thyroglobulin (TG), thyroid peroxidase (TPO), the sodium/iodide symporter (NIS), and the TSH receptor (TSHR) as assessed by reverse transcription polymerase chain reaction and immunostaining. Most notably, the Activin/TSH-induced differentiation approach resulted in thyroid follicle formation and abundant TG protein expression within the follicular lumens. On stimulation with TSH, these hES-derived follicles were also capable of dose-dependent cAMP generation and radioiodine uptake, indicating functional thyroid epithelial cells. CONCLUSION: The induced expression of PAX8 and NKX2-1 in hES cells was followed by differentiation into thyroid epithelial cells and their commitment to form functional three-dimensional neo-follicular structures. The data provide proof of principal that hES cells can be committed to thyroid cell speciation under appropriate conditions.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , Nuclear Proteins/metabolism , Thyroid Gland/physiology , Transcription Factors/metabolism , Biomarkers/metabolism , Cell Line , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Nuclear Proteins/genetics , PAX8 Transcription Factor , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Phenotype , Thyroid Gland/cytology , Thyroid Gland/metabolism , Thyroid Nuclear Factor 1 , Transcription Factors/genetics , Transfection
17.
Thyroid ; 25(1): 51-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25333622

ABSTRACT

BACKGROUND: Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. METHODS: To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. RESULTS: We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor-expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10(-8) M, and molecule MS438 had an EC50 of 5.3×10(-8) M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gßγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gßγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. CONCLUSIONS: Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists.


Subject(s)
Receptors, Thyrotropin/agonists , Thyroid Diseases/drug therapy , Animals , Cell Line , Drug Evaluation, Preclinical , Female , Mice
18.
Article in English | MEDLINE | ID: mdl-25076938

ABSTRACT

BACKGROUND: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. METHODS: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf((V600E))/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. RESULTS: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAF(V600E) mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-ß1 and TGF-ß3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of vimentin expression and up-regulation of stemness markers Oct4, Rex1, and CD15, with enhanced migration ability of the cells. We also showed that TGF-ß1 was able to induce Snail and vimentin expression in the Marca cell thyroid cancer line, indicating the induction of EMT in these cells, and this induction of EMT and stemness was significantly inhibited by celastro a natural inhibitor of neoplastic cells. CONCLUSION: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf((V600E))/TPO-Cre), the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells. Furthermore, celastrol suppressed TGF-ß1 induced EMT in thyroid cancer cells and may have therapeutic potential.

19.
J Clin Endocrinol Metab ; 99(3): E400-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24823711

ABSTRACT

CONTEXT: Cancer stem cells (CSCs) have the ability to self-renew through symmetric and asymmetric cell division. CSCs may arise from mutations within an embryonic stem cell/progenitor cell population or via epithelial-mesenchymal transition (EMT), and recent advances in the study of thyroid stem cells have led to a growing recognition of the likely central importance of CSCs in thyroid tumorigenesis. OBJECTIVE: The objectives of this study were to establish the presence of a stem cell population in human thyroid tumors and to identify, isolate, and characterize CSCs in thyroid cancer cell lines. RESULTS: 1) Human thyroid cancers (n = 10) and thyroid cancer cell lines (n = 6) contained a stem cell population as evidenced by pluripotent stem cell gene expression. 2) Pulse-chase experiments with thyroid cancer cells identified a label-retaining cell population, a primary characteristic of CSCs, which at mitosis divided their DNA both symmetrically and asymmetrically and included a population of cells expressing the progenitor marker, stage-specific embryonic antigen 1 (SSEA-1). 3) Cells positive for SSEA-1 expressed additional stem cell markers including Oct4, Sox2, and Nanog were confirmed as CSCs by their tumor-initiating properties in vivo, their resistance to chemotherapy, and their multipotent capability. 4) SSEA-1-positive cells showed enhanced vimentin expression and decreased E-cadherin expression, indicating their likely derivation via EMT. CONCLUSIONS: Cellular diversity in thyroid cancer occurs through both symmetric and asymmetric cell division, and SSEA-1-positive cells are one form of CSCs that appear to have arisen via EMT and may be the source of malignant thyroid tumor formation. This would suggest that thyroid cancer CSCs were the result of thyroid cancer transformation rather than the source.


Subject(s)
Carcinoma, Papillary/pathology , Drug Resistance, Neoplasm , Neoplastic Stem Cells/pathology , Pluripotent Stem Cells/pathology , Thyroid Neoplasms/pathology , Animals , Carcinoma, Papillary/drug therapy , Cell Division , Cell Polarity , Cell Separation , Humans , Lewis X Antigen/metabolism , Male , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Tumor Cells, Cultured
20.
J Autoimmun ; 47: 17-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23958398

ABSTRACT

Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gsα and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves' disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable functional consequences for the cell. In particular, there is a great contrast between stimulating (S) TSHR-Abs, which induce thyroid hormone synthesis and secretion as well as thyroid cell proliferation, compared to so called "neutral" (N) TSHR-Abs which may induce thyroid cell apoptosis via reactive oxygen species (ROS) generation. In the present study, using a rat thyrocyte (FRTL-5) ex vivo model system, our hypothesis was that while N-TSHR-Abs can induce apoptosis via activation of mitochondrial ROS (mROS), the S-TSHR-Abs are able to stimulate cell survival and avoid apoptosis by actively suppressing mROS. Using fluorescent microscopy, fluorometry, live cell imaging, immunohistochemistry and immunoblot assays, we have observed that S-TSHR-Abs do indeed suppress mROS and cellular stress and this suppression is exerted via activation of the PKA/CREB and AKT/mTOR/S6K signaling cascades. Activation of these signaling cascades, with the suppression of mROS, initiated cell proliferation. In sharp contrast, a failure to activate these signaling cascades with increased activation of mROS induced by N-TSHR-Abs resulted in thyroid cell apoptosis. Our current findings indicated that signaling diversity induced by different TSHR-Abs regulated thyroid cell fate. While S-TSHR-Abs may rescue cells from apoptosis and induce thyrocyte proliferation, N-TSHR-Abs aggravate the local inflammatory infiltrate within the thyroid gland, or in the retro-orbit, by inducing cellular apoptosis; a phenomenon known to activate innate and by-stander immune-reactivity via DNA release from the apoptotic cells.


Subject(s)
Apoptosis/immunology , Graves Disease/immunology , Immunoglobulins, Thyroid-Stimulating/immunology , Receptors, Thyrotropin/immunology , Thyroid Gland/immunology , Animals , CREB-Binding Protein/metabolism , Cell Proliferation , Cell Survival/immunology , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Mitochondria/immunology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Receptors, Thyrotropin/agonists , Receptors, Thyrotropin/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism , Thyroid Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...