Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2308822, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884279

ABSTRACT

The genetic basis of vertebrate emergence during metazoan evolution has remained largely unknown. Understanding vertebrate-specific genes, such as the tight junction protein Occludin (Ocln), may help answer this question. Here, it is shown that mammary glands lacking Ocln exhibit retarded epithelial branching, owing to reduced cell proliferation and surface expansion. Interestingly, Ocln regulates mitotic spindle orientation and function, and its loss leads to a range of defects, including prolonged prophase and failed nuclear and/or cytoplasmic division. Mechanistically, Ocln binds to the RabGTPase-11 adaptor FIP5 and recruits recycling endosomes to the centrosome to participate in spindle assembly and function. FIP5 loss recapitulates Ocln null, leading to prolonged prophase, reduced cell proliferation, and retarded epithelial branching. These results identify a novel role in OCLN-mediated endosomal trafficking and potentially highlight its involvement in mediating membranous vesicle trafficking and function, which is evolutionarily conserved and essential.

2.
Adv Sci (Weinh) ; : e2307452, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708713

ABSTRACT

Tumor heterogeneity, the presence of multiple distinct subpopulations of cancer cells between patients or among the same tumors, poses a major challenge to current targeted therapies. The way these different subpopulations interact among themselves and the stromal niche environment, and how such interactions affect cancer stem cell behavior has remained largely unknown. Here, it is shown that an FGF-BMP7-INHBA signaling positive feedback loop integrates interactions among different cell populations, including mammary gland stem cells, luminal epithelial and stromal fibroblast niche components not only in organ regeneration but also, with certain modifications, in cancer progression. The reciprocal dependence of basal stem cells and luminal epithelium is based on basal-derived BMP7 and luminal-derived INHBA, which promote their respective expansion, and is regulated by stromal-epithelial FGF signaling. Targeting this interaction loop, for example, by reducing the function of one or more of its components, inhibits organ regeneration and breast cancer progression. The results have profound implications for overcoming drug resistance because of tumor heterogeneity in future targeted therapies.

3.
Nanoscale ; 16(19): 9406-9411, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38629905

ABSTRACT

In the field of contemporary medicine, inflammation has emerged as a significant concern in global public health. Among the current anti-inflammatory strategies, nanozymes possess distinctive advantages and demonstrate unexpected efficacy in combating inflammation. However, the indeterminate structures and limited enzyme-like activity exhibited by most developed nanozymes impede their clinical translation and therapeutic effectiveness. In this paper, we developed a nanozyme derived from a well-defined metal-organic cage (MOC). The oxidized MOC (MOC-O), containing pyridine nitrogen oxide moieties, exhibited effective cascade superoxide dismutase (SOD) and catalase (CAT)-like activities for scavenging reactive oxygen species (ROS). This ROS scavenging ability was confirmed through flow cytometry analysis using DCFH-DA in a hypoxia/reoxygenation (H/R) model, where MOC-O significantly alleviated oxidative stress. Furthermore, the administration of MOC-O resulted in preserved renal function during renal ischemia-reperfusion (I/R) injury due to downregulated oxidative stress levels and reduced cell apoptosis.


Subject(s)
Antioxidants , Kidney , Oxidative Stress , Reactive Oxygen Species , Reperfusion Injury , Superoxide Dismutase , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Kidney/metabolism , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Mice , Apoptosis/drug effects , Catalase/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Male
4.
Cell Death Dis ; 15(4): 256, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600092

ABSTRACT

Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Signal Transduction , Cell Differentiation/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Fibroblasts/metabolism
5.
J Pharm Anal ; 13(6): 603-615, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37440910

ABSTRACT

Intensive cancer treatment with drug combination is widely exploited in the clinic but suffers from inconsistent pharmacokinetics among different therapeutic agents. To overcome it, the emerging nanomedicine offers an unparalleled opportunity for encapsulating multiple drugs in a nano-carrier. Herein, a two-step super-assembled strategy was performed to unify the pharmacokinetics of a peptide and a small molecular compound. In this proof-of-concept study, the bioinformatics analysis firstly revealed the potential synergies towards hepatoma therapy for the associative inhibition of exportin 1 (XPO1) and ataxia telangiectasia mutated-Rad3-related (ATR), and then a super-assembled nano-pill (gold nano drug carrier loaded AZD6738 and 97-110 amino acids of apoptin (AP) (AA@G)) was constructed through camouflaging AZD6738 (ATR small-molecule inhibitor)-binding human serum albumin onto the AP-Au supramolecular nanoparticle. As expected, both in vitro and in vivo experiment results verified that the AA@G possessed extraordinary biocompatibility and enhanced therapeutic effect through inducing cell cycle arrest, promoting DNA damage and inhibiting DNA repair of hepatoma cell. This work not only provides a co-delivery strategy for intensive liver cancer treatment with the clinical translational potential, but develops a common approach to unify the pharmacokinetics of peptide and small-molecular compounds, thereby extending the scope of drugs for developing the advanced combination therapy.

6.
Food Microbiol ; 105: 104009, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35473971

ABSTRACT

In this study, we examined the effects of different salt stress application methods on the Lactiplantibacillus plantarum LIP-1 freeze-drying survival rate. The application of salt stress during the stationary phase significantly improved Lactiplantibacillus plantarum LIP-1 freeze-drying survival rates (P < 0.05). The indirect application of salt stress via phosphate-buffered saline containing 0.4 mol/L NaCl (NB group) led to significantly higher freeze-drying survival rates compared to when salt stress was directly applied (NA group: the concentration of NaCl is 0.4 mol/L) (P < 0.05). Following exposure to salt stress, Lactiplantibacillus plantarum LIP-1 cells exuded excessive Na+ out of the cell and transported extracellular K+ into the cell, resulting in upregulation of the trkA gene, which is related to K+ transport, thereby significantly upregulating the expression of a lysR-type transcription factor, which increased the cell membrane unsaturated fatty acid content, reducing the degree of cell membrane damage and improving the freeze-drying survival rate. When the concentration of NaCl is 0.4 mol/L, compared with direct salt stress application, indirect application led to higher intracellular pH and ATP content, which effectively reduced DNA and cell membrane damage, respectively. Together, these results demonstrate that appropriate indirect salt stress application can improve Lactiplantibacillus plantarum LIP-1 freeze-drying resistance.


Subject(s)
Lactobacillus , Sodium Chloride , Freeze Drying/methods , Salt Stress , Sodium Chloride/pharmacology , Survival Rate
7.
Cell Rep ; 38(7): 110375, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172155

ABSTRACT

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Subject(s)
Epithelium , Glycoproteins , Integrin beta1 , Mammary Glands, Animal , Morphogenesis , Signal Transduction , Animals , Cell Movement/genetics , Cell Polarity , Cell Proliferation , Down-Regulation , Epithelial Cells/metabolism , Epithelium/growth & development , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/metabolism , Integrin beta1/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mice, Transgenic , Models, Biological , Protein Binding
8.
Food Res Int ; 149: 110694, 2021 11.
Article in English | MEDLINE | ID: mdl-34600689

ABSTRACT

The growth and the resistance to adverse environments of lactic acid bacteria would be affected by adjusting the initial pH of the medium. In order to explore the effect of changing the initial pH of culture medium on the freeze-drying survival rate of the Lactiplantibacillus plantarum LIP-1, the effect of initial pH on cell membrane fatty acid composition and key enzyme activity were mainly determined, and the internal mechanism was studied by transcriptomics and proteomics methods. We found that compared with initial pH 7.4 group, initial pH 6.8 group could improve the freeze-drying survival rate of the L. plantarum LIP-1. It was possibly due to the lactate dehydrogenase (LDH) was upregulated in the initial pH6.8 group, which led to a rapid decrease in culture pH. To reduce the inhibitory effect of long-term acid environment on growth, the strain upregulated the expression of fatty acid synthesis-related genes and proteins, promoted the relative content of cyclopropane and unsaturated fatty acids, improved integrity of the cell membranes. The adjustment of fatty acid composition maintained the integrity of the cell membrane in a freeze-drying environment to improve the freeze-drying survival rate of the initial pH6.8 group. In addition, the long-term acid environment stimulated a cross-stress tolerance mechanism that significantly upregulated the expression of a cold stress protein. The results indicated that the optimal initial pH of the medium could improve the ability of L. plantarum LIP-1 to resist freeze-drying.


Subject(s)
Proteomics , Transcriptome , Fatty Acids , Freeze Drying , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...