Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37687741

ABSTRACT

Yellow phosphorus slag (YPS) is a byproduct from the production of yellow phosphorus. It has potential pozzolanic activity and can be used as a supplementary cementitious material. However, the early strength of cement mortar decreases significantly with increasing YPS dosage, which restricts the utilization of YPS in cement and concrete. This study aimed to increase the pozzolanic activity of YPS ash by thermal activation. The strength method, alkali dissolution method and polymerization degree method were used to evaluate the effect of thermal activation at different temperatures on the pozzolanic activity of YPS ash. The results showed that YPS ash calcined at 800 °C helps to enhance the early strength because the fluorine in cuspidine (Ca4Si2O7F2) is insoluble, reducing the retarding effect on the mortar. The higher late strength of YPS ash calcined at 100 °C was due to the low polymerization degree of [SiO4]. The pozzolanic activity of YPS ash is positively correlated with the dissolution concentration of (Si + Al) and the compressive strength and negatively associated with the polymerization degree. This paper shows a possibility for the large-scale utilization of YPS.

2.
Materials (Basel) ; 15(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079343

ABSTRACT

Aluminosilicate phosphate (ASP) geopolymers are a new kind of green cementitious materials synthesized from aluminosilicate precursors and acidic activators (phosphoric acid or phosphate), which have received extensive attention from researchers because of their excellent and unique characteristics. The current investigation indicates that ASP geopolymers have the characteristics of a low-carbon synthesis process, high mechanical properties (e.g., the highest compressive strength can reach 146 MPa), a strong heat resistance (e.g., withstanding a high temperature of 1500 °C), and excellent dielectric properties. These excellent properties make them have broad application prospects in the fields of new building materials, coating materials, insulating materials, and heavy metal curing. Based on the research findings of approximately 85 relevant literatures on ASP geopolymers in past decades, this paper focuses on the latest research progress of ASP geopolymers from the perspectives of synthesis processes, performances, modifications, and application developments. In addition, this study summarizes the key problems existing in the current research of ASP geopolymers and suggests their possible applications in the future, which will help to provide directions for further research activities of relevant researchers.

3.
Materials (Basel) ; 15(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160867

ABSTRACT

Magnesium potassium phosphate cement (MKPC) is an excellent rapid repair material for concrete, and many mineral admixtures have been applied to promote its performance. This study focuses on the quantitative characterization of the physical and chemical contributions of granulated blast-furnace slag with various finenesses to the performance development of MKPC. It was found that the addition of slag could increase the setting time, which is mainly due to the dilution of cement. Fine slag tends to decrease the fluidity of MKPC mortar. The physical contributions of ordinary and ultrafine slag to the early performance of MKPC mortar are 23% and 30%, while the chemical contributions are only 6%~10%. At late ages, the physical contribution is less than 10% and the chemical contribution of slag is even slightly negative. The addition of slag is beneficial to the compact packing of MKPC, which is the main reason for the physical contribution. Slag could react in the MKPC system, and increasing the fineness significantly promotes the reaction kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...