Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 99: 45-56, 2019 10.
Article in English | MEDLINE | ID: mdl-31295453

ABSTRACT

BACKGROUND AND PURPOSE: TGR5 plays an important role in many physiological processes. However, the functions of TGR5 in the regulation of the glucose metabolism and insulin sensitivity in the skeletal muscles have not been fully elucidated. We synthesized MN6 as a potent and selective TGR5 agonist. Here, the effect of MN6 on insulin resistance in skeletal muscles was evaluated in diet-induced obese (DIO) mice and C2C12 myotubes, and the underlying mechanisms were explored. METHODS: The activation of MN6 on human and mouse TGR5 was evaluated by a cAMP assay in HEK293 cell lines stable expressing hTGR5/CRE or mTGR5/CRE cells. GLP-1 secretion was measured in NCI-H716 cells and CD1 mice. The acute and chronic effects of MN6 on regulating metabolic abnormalities were observed in ob/ob and DIO mice. 2-deoxyglucose uptake was examined in isolated skeletal muscles. Akt phosphorylation, glucose uptake and glycogen synthesis were examined to assess the effects of MN6 on palmitate-induced insulin resistance in C2C12 myotubes. RESULTS: MN6 potently activated human and mouse TGR5 with EC50 values of 15.9 and 17.9 nmol/L, respectively, and stimulated GLP-1 secretion in NCI-H716 cells and CD1 mice. A single oral dose of MN6 significantly decreased the blood glucose levels in ob/ob mice. Treatment with MN6 for 15 days reduced the fasting blood glucose and HbA1c levels in ob/ob mice. MN6 improved glucose and insulin tolerance and enhanced the insulin-stimulated glucose uptake of skeletal muscles in DIO mice. The palmitate-induced impairment of insulin-stimulated Akt phosphorylation, glucose uptake and glycogen synthesis in C2C12 myotubes could be prevented by MN6. The effect of MN6 on palmitate-impaired insulin-stimulated Akt phosphorylation was abolished by siRNA-mediated knockdown of TGR5 or by the inhibition of adenylate cyclase or protein kinase A, suggesting that this effect is dependent on the activation of TGR5 and the cAMP/PKA pathway. CONCLUSIONS: Our study identified that a TGR5 agonist could ameliorate insulin resistance by the cAMP/PKA pathway in skeletal muscles; this uncovered a new effect of the TGR5 agonist on regulating the glucose metabolism and insulin sensitivity in skeletal muscles and further strengthened its potential value for the treatment of type 2 diabetes.


Subject(s)
Cyclopropanes/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance , Muscle, Skeletal/drug effects , Pyridines/therapeutic use , Quinoxalines/therapeutic use , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat , Glucagon-Like Peptide 1/metabolism , HEK293 Cells , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism
2.
Acta Pharmacol Sin ; 37(10): 1359-1369, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27264313

ABSTRACT

AIM: TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. METHODS: TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. RESULTS: OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3-30 µmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 µmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. CONCLUSION: OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the intestine to avoid systemic side effects.


Subject(s)
Blood Glucose/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Quinoxalines/pharmacology , Receptors, G-Protein-Coupled/agonists , Xanthines/pharmacology , Animals , Caco-2 Cells , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/metabolism , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/metabolism , Male , Mice , Mice, Inbred ICR , Permeability , Quinoxalines/metabolism , Quinoxalines/pharmacokinetics , Xanthines/metabolism , Xanthines/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...