Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 44(6): 817-824, 2017 06.
Article in English | MEDLINE | ID: mdl-28101806

ABSTRACT

Glutamate decarboxylase (GAD) is the sole enzyme that synthesizes γ-aminobutyric acid through the irreversible decarboxylation of L-glutamate. In this study, the purification and characterization of an unreported GAD from a novel strain of Enterococcus raffinosus TCCC11660 were investigated. The native GAD from E. raffinosus TCCC11660 was purified 32.3-fold with a recovery rate of 8.3%, using ultrafiltration and ammonium sulfate precipitation, followed by ion-exchange and size-exclusion chromatography. The apparent molecular weight of purified GAD, as determined by SDS-PAGE and size-exclusion chromatography was 55 and 110 kDa, respectively, suggesting that GAD exists as a dimer of identical subunits in solution. In the best sodium citrate buffer, metal ions of Mo6+ and Mg2+ had positive effects, while Cu2+, Fe2+, Zn2+ and Co2+ showed significant adverse effects on enzyme activity. The optimum pH and temperature of GAD were determined to be 4.6 and 45 °C, while the K m and V max values for the sole L-glutamate substrate were 5.26 and 3.45 µmol L-1 min-1, respectively.


Subject(s)
Enterococcus/enzymology , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/chemistry , Glutamate Decarboxylase/isolation & purification , Glutamic Acid/metabolism , Hydrogen-Ion Concentration , Metals , Molecular Weight , Temperature
2.
J Ind Microbiol Biotechnol ; 44(4-5): 697-704, 2017 05.
Article in English | MEDLINE | ID: mdl-27155855

ABSTRACT

This work investigated the efficient bioconversion process of L-glutamate to GABA by Lactobacillus brevis TCCC 13007 resting cells. The optimal bioconversion system was composed of 50 g/L 48 h cultivated wet resting cells, 0.1 mM pyridoxal phosphate in glutamate-containing 0.6 M citrate buffer (pH 4.5) and performed at 45 °C and 180 rpm. By 10 h bioconversion at the ratio of 80 g/L L-glutamic acid to 240 g/L monosodium glutamate, the final titer of GABA reached 201.18 g/L at the molar bioconversion ratio of 99.4 %. This process presents a potential for industrial and commercial applications and also offers a promising feasibility of continuous GABA production coupled with fermentation. Besides, the built kinetics model revealed that the optimum operating conditions were 45 °C and pH 4.5, and the bioconversion kinetics at low ranges of substrate concentration (0 < S < 80 g/L) was assumed to follow the classical Michaelis-Menten equation.


Subject(s)
Glutamic Acid/metabolism , Levilactobacillus brevis/metabolism , gamma-Aminobutyric Acid/biosynthesis , Fermentation , Hydrogen-Ion Concentration , Kinetics , Levilactobacillus brevis/cytology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL