Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
1.
Acta Diabetol ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302468

ABSTRACT

BACKGROUND: Considering the impact of adipokines on metabolic syndrome-related disorders and even chronic illnesses, it would appear vital to look for efficient treatments for these variables. The goal of this study was to thoroughly examine how the ketogenic diet (KD) affects adipokines. METHODS: Using standard keywords, the databases Scopus, PubMed/Medline, Web of Science, Cochrane, and Embase were searched to find all controlled trials looking into how KD affected adipokines (leptin, adiponectin, and ghrelin). By using a random-effects model analysis, pooled weighted mean difference and 95% confidence intervals were obtained. RESULTS: This article featured twenty-two studies. The combined results demonstrated that, as compared to the control group, leptin levels in all populations are significantly lower when KD is adhered to (WMD: - 0.14 ng/ml, 95% CI: - 8.66, - 3.61, P < 0.001). On the other hand, no discernible impact of this diet on ghrelin and adiponectin concentrations was noted. The subgroup analysis results demonstrated that the drop in leptin levels was considerably higher in persons with BMI > 30 kg/m2 and in trials that followed the KD for ≤ 8 weeks than in the other groups. CONCLUSIONS: Generally speaking, this diet can be utilized as a potentially helpful supplementary therapy to improve this adipokine, given the significance that leptin plays on numerous metabolic illnesses.

2.
Exp Eye Res ; 247: 110068, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39233304

ABSTRACT

The eyes are one of the most important sensory organs in the human body. Currently, diseases such as limbal stem cell deficiency, cataract, retinitis pigmentosa and dry eye seriously threaten the quality of people's lives, and the treatment of advanced blinding eye disease and dry eye is ineffective and costly. Thus, new treatment modalities are urgently needed to improve patients' symptoms and suffering. In recent years, stem cell-derived three-dimensional structural organoids have been shown to mimic specific structures and functions similar to those of organs in the human body. Currently, 3D culture systems are used to construct organoids for different ocular growth and development models and ocular disease models to explore their physiological and pathological mechanisms. Eye organoids can also be used as a platform for drug screening. This paper reviews the latest research progress in regard to eye organoids (the cornea, lens, retina, lacrimal gland, and conjunctiva).


Subject(s)
Eye Diseases , Organoids , Humans , Eye Diseases/pathology , Animals , Cornea/pathology
3.
Signal Transduct Target Ther ; 9(1): 195, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098923

ABSTRACT

Accumulated evidence suggested that gut microbial dysbiosis interplayed with progressive chronic kidney disease (CKD). However, no available therapy is effective in suppressing progressive CKD. Here, using microbiomics in 480 participants including healthy controls and patients with stage 1-5 CKD, we identified an elongation taxonomic chain Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-Lactobacillus johnsonii correlated with patients with CKD progression, whose abundance strongly correlated with clinical kidney markers. L. johnsonii abundance reduced with progressive CKD in rats with adenine-induced CKD. L. johnsonii supplementation ameliorated kidney lesion. Serum indole-3-aldehyde (IAld), whose level strongly negatively correlated with creatinine level in CKD rats, decreased in serum of rats induced using unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (NX) as well as late CKD patients. Treatment with IAld dampened kidney lesion through suppressing aryl hydrocarbon receptor (AHR) signal in rats with CKD or UUO, and in cultured 1-hydroxypyrene-induced HK-2 cells. Renoprotective effect of IAld was partially diminished in AHR deficiency mice and HK-2 cells. Our further data showed that treatment with L. johnsonii attenuated kidney lesion by suppressing AHR signal via increasing serum IAld level. Taken together, targeting L. johnsonii might reverse patients with CKD. This study provides a deeper understanding of how microbial-produced tryptophan metabolism affects host disease and discovers potential pathways for prophylactic and therapeutic treatments for CKD patients.


Subject(s)
Lactobacillus johnsonii , Renal Insufficiency, Chronic , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/pathology , Animals , Rats , Humans , Mice , Male , Lactobacillus johnsonii/genetics , Indoles , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome , Female
4.
World J Oncol ; 15(4): 598-611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993244

ABSTRACT

Background: Impact of radiotherapy (RT) for esophageal cancer (EC) patients on the development of secondary head and neck cancer (SHNC) remains equivocal. The objective of this study was to investigate the link between definitive RT used for EC treatment and subsequent SHNC. Methods: This study was conducted using the Surveillance, Epidemiology, and End Results (SEER) database to collect the data of primary EC patients. Fine-Gray competing risk regression and standardized incidence ratio (SIR) and propensity score matching (PSM) method were used to match SHNC patients with only primary head and neck cancer (HNC) patients. Overall survival (OS) rates were applied by Kaplan-Meier analysis. Results: In total, 14,158 EC patients from the SEER database were included, of which 9,239 patients (65.3%) received RT and 4,919 patients (34.7%) received no radiation therapy (NRT). After a 12-month latency period, 110 patients (1.2%) in the RT group and 36 patients (0.7%) in the NRT group experienced the development of SHNC. In individuals with primary EC, there was an increased incidence of SHNC compared to the general US population (SIR = 5.95, 95% confidence interval (CI): 5.15 - 6.84). Specifically, the SIR for SHNC was 8.04 (95% CI: 6.78 - 9.47) in the RT group and 3.51 (95% CI: 2.64 - 4.58) in the NRT group. Patients who developed SHNC after RT exhibited significantly lower OS compared to those after NRT. Following PSM, the OS of patients who developed SHNC after RT remained significantly lower than that of matched patients with only primary HNC. Conclusion: An association was discovered between RT for EC and increased long-term risk of SHNC. This work enables radiation oncologists to implement mitigation strategies to reduce the long-term risk of SHNC in patients who have received RT following primary EC.

5.
Article in English | MEDLINE | ID: mdl-39041275

ABSTRACT

BACKGROUND: Normal keratinocyte differentiation is important for epidermal wound healing. ΔNp63 is a major gene regulating epidermal formation and differentiation. We identified miRNAs targeting ΔNp63 and studied the association between the miRNAs and DNA methylation in keratinocyte differentiation. AIMS: This study aimed to explore the mechanisms regulating ΔNp63 expression during keratinocyte differentiation. METHODS: Bioinformatics analysis was performed to screen the miRNAs targeting ΔNp63 and uncover potential pathway mechanisms. The differentiation model of keratinocytes was established by CaCl2 treatment. Furthermore, the effects of the miRNA transgenic technique on Δ Np63 and keratinocyte differentiation were studied. In addition, the RNA FISH experiment was conducted to detect the location of different miRNAs. A double luciferase reporter experiment was carried out to verify the potential bindings between the miRNAs and ΔNp63. A rescue experiment was also performed to assess the effects of different miRNAs targeting ΔNp63 on keratinocyte differentiation. We analyzed the methylation patterns of the promoter regions of miRNAs using keratinocytes treated with 5-Aza-2'-deoxycytidine. Finally, we designed a methylation rescue experiment to verify the effects of miRNA promoter methylation on keratinocyte differentiation. RESULTS: Bioinformatics analysis showed that the miR-125b-5p and miR-199b-5p binding to the ΔNp63 3'UTR region decreased during skin development. Moreover, such binding may downregulate the PI3K/AKT/mTOR pathway. The expression levels of CK10, Inv, TG1, ΔNp63, and PI3K/AKT/mTOR were all significantly increased during keratinocyte differentiation. Both miR- 125b-5p and miR-199b-5p were localized in the cytoplasm. Luciferase assay results showed that both miR-125b-5p and miR-199b-5p can bind to the 3'UTR region of ΔNp63. Overexpression of ΔNp63 can significantly counteract the inhibitory effect of miRNA mimics on keratinocyte differentiation. Moreover, the promoter regions of both miR-125b-5p and miR-199b-5p had methylation sites, and the methylation levels in those promoter regions were significantly increased during keratinocyte differentiation. 5-Aza-2'-Deoxycytidine treatment increased the expression of miR- 125b-5p and miR-199b-5p and inhibited the differentiation of keratinocytes. Finally, miRNA inhibitors reversed the inhibitory effects of 5-Aza-2'-deoxycytidine on keratinocyte differentiation. CONCLUSION: Promoter hypermethylation in miR-125b-5p and miR-199b-5p seem to promote keratinocyte differentiation via upregulation of ΔNp63 expression and the activation of the PI3K/AKT/mTOR pathway. The findings of this study are helpful for future research on skin development and clinical scar-free healing.

6.
Heliyon ; 10(12): e33233, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022010

ABSTRACT

As a complementary and alternative therapy, acupuncture is widely used in the prevention and treatment of various diseases. However, the understanding of the mechanism of acupuncture effects is still limited due to the lack of systematic biological validation. Notably, proteomics technologies in the field of acupuncture are rapidly evolving, and these advances are greatly contributing to the research of acupuncture. In this study, we review the progress of proteomics research in analyzing the molecular mechanisms of acupuncture for neurological disorders, pain, circulatory disorders, digestive disorders, and other diseases, with an in-depth discussion around acupoint prescription and acupuncture manipulation modalities. The study found that proteomics has great potential in understanding the mechanisms of acupuncture. This study will help explore the mechanisms of acupuncture from a proteomic perspective and provide information to support future clinical decisions.

7.
Microbiome ; 12(1): 123, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971798

ABSTRACT

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Subject(s)
Carbon , Oil and Gas Fields , Phylogeny , Carbon/metabolism , Oil and Gas Fields/microbiology , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Alkanes/metabolism
8.
Brain ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976650

ABSTRACT

Mutations in the GBA1 gene are common genetic risk factors for Parkinson's disease (PD), disrupting enzymatic activity and causing lysosomal dysfunction, leading to elevated α-synuclein (α-syn) levels. While GBA1's role in synucleinopathy is well-established, recent research underscores neuroinflammation as a significant pathogenic mechanism in GBA1 deficiency. This study investigates neuroinflammation in Gba1 E326K knock-in mice, a model associated with increased PD and dementia risk. At 9 and 24 months, we assessed GBA1 protein and activity, α-synuclein pathology, neurodegeneration, motor deficits, and gliosis in the ventral midbrain and hippocampus using immunohistochemistry (IHC), Western blot (WB), and GCase assays. Additionally, primary microglia from WT and GBA1E326K/E326K mice were treated with α-syn preformed fibrils (PFF) to study microglia activation, pro-inflammatory cytokines, reactive astrocyte formation, and neuronal death through qPCR, WB, and immunocytochemistry analyses. We also evaluated the effects of gut inoculation of α-syn PFF in Gba1 E326K mice at 7 months and striatal inoculation at 10 months, assessing motor/non-motor symptoms, α-syn pathology, neuroinflammation, gliosis, and neurodegeneration via behavioural tests, IHC, and WB assays. At 24 months, Gba1 E326K knock-in mice showed reduced GCase enzymatic activity and glucosylceramide build-up in the ventral midbrain and hippocampus. Increased pro-inflammatory cytokines and reactive astrocytes were observed in microglia and astrocytes from Gba1 E326K mice treated with pathologic α-syn PFF. Gut inoculation of α-syn PFF increased Lewy body accumulation in the hippocampal dentate gyrus, with heightened microglia and astrocyte activation and worsened non-motor symptoms. Intrastriatal α-syn preformed fibril injection induced motor deficits, reactive glial protein accumulation, and tauopathy in the prefrontal cortex and hippocampus of Gba1 E326K mice. GBA1 deficiency due to the Gba1 E326K mutation exacerbates neuroinflammation and promotes pathogenic α-synuclein transmission, intensifying disease pathology in PD models. This study enhances our understanding of how the Gba1 E326K mutation contributes to neuroinflammation and the spread of pathogenic α-syn in the brain, suggesting new therapeutic strategies for PD and related synucleinopathies.

9.
J Org Chem ; 89(15): 10844-10853, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39044363

ABSTRACT

A TMSOTf-catalyzed C2-sulfenylation of indole alkaloids with N-sulfenylsuccinimides has been developed. This straightforward, metal-free, and cost-effective catalytic system produces valuable 2-thioindole derivatives with yields ranging from moderate to excellent. The synthetic applicability demonstrated includes the total syntheses of isatindigotindolosides I-IV.

10.
Front Neurol ; 15: 1394150, 2024.
Article in English | MEDLINE | ID: mdl-39070054

ABSTRACT

Mitochondrial DNA depletion syndrome (MDS), characterized by succinate-CoA ligase deficiency and loss of mitochondrial DNA (mtDNA), is caused by specific variants in nuclear genes responsible for mtDNA maintenance. SUCLA2-related mitochondrial DNA depletion syndrome, type 5 (MTDPS-5), presents as a rare, severe early progressive encephalomyopathy. This report investigates a new family exhibiting clinical manifestations of MTDPS-5 and elucidates the genetic basis of this disorder. In two affected siblings, a novel maternally inherited nonsense variant [c.1234C>T (p.Arg412*)] in the SUCLA2 gene and a unique paternally inherited indel variant (g.48569263-48571020del1758insATGA) were identified. Additionally, the siblings exhibited blood mtDNA content lower than 33% compared to age-matched controls. These findings underscore the importance of assessing SUCLA2 variants in patients with severe early progressive encephalomyopathy, even in the absence of methylmalonic aciduria or mtDNA loss, thereby broaden the mutational spectrum of this gene.

11.
Medicine (Baltimore) ; 103(23): e38339, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847666

ABSTRACT

In this study, we developed a method for determining cotinine and 3-hydroxycotinine in human serum and established a methodology for an in-depth study of tobacco exposure and health. After the proteins in the human serum samples were precipitated with acetonitrile, they were separated on a ZORBAX SB-Phenyl column with a mobile phase of methanol encompassing 0.3% formic acid-water encompassing 0.15% formic acid. The measurement was performed on an API5500 triple quadrupole mass spectrometer in the multiple reaction monitoring mode. Cotinine, 3-hydroxycotinine, and cotinine-d3 isotope internal standards were held for 2.56 minutes, 1.58 minutes, and 2.56 minutes, respectively. In serum, the linear range was 0.05 to 500 ng·mL-1 for cotinine and 0.50 to 1250 ng·mL-1 for 3-hydroxycotinine. The lower limit of quantification (LLOQ) was 0.05 ng·mL-1 and 0.5 ng·mL-1 for cotinine and 3-hydroxycotinine, respectively. The intra-day and inter-day relative standard deviations were <11%, and the relative errors were within ±â€…7%. Moreover, the mean extraction recoveries of cotinine and 3-hydroxycotinine were 98.54% and 100.24%, respectively. This method is suitable for the rapid determination of cotinine and 3-hydroxycotinine in human serum because of its rapidity, sensitivity, strong specificity, and high reproducibility. The detection of cotinine levels in human serum allows for the identification of the cutoff value, providing a basis for differentiation between smoking and nonsmoking populations.


Subject(s)
Cotinine , Tandem Mass Spectrometry , Humans , Cotinine/blood , Cotinine/analogs & derivatives , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Reproducibility of Results , Limit of Detection
12.
BMC Oral Health ; 24(1): 695, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879477

ABSTRACT

BACKGROUND: The status of dental caries is closely related to changes in the oral microbiome. In this study, we compared the diversity and structure of the dental plaque microbiome in children with severe early childhood caries (S-ECC) before and after general anaesthesia and outpatient treatment. METHODS: Forty children aged 3 to 5 years with S-ECC who had completed whole-mouth dental treatment under general anaesthesia (C1) or in outpatient settings (C2) were selected, 20 in each group. The basic information and oral health status of the children were recorded, and the microbial community structure and diversity of dental plaque before treatment (C1, C2), the day after treatment(C2_0D), 7 days after treatment (C1_7D, C2_7D), 1 month after treatment (C1_1M, C2_1M), and 3 months after treatment (C1_3M, C2_3M) were analysed via 16 S rRNA high-throughput sequencing technology. RESULTS: (1) The alpha diversity test showed that the flora richness in the multiappointment group was significantly greater at posttreatment than at pretreatment (P < 0.05), and the remaining alpha diversity index did not significantly differ between the 2 groups (P > 0.05). The beta diversity analysis revealed that the flora structures of the C1_7D group and the C2_3M group were significantly different from those of the other time points within the respective groups (P < 0.05). (2) The core flora existed in both the pre- and posttreatment groups, and the proportion of their flora abundance could be altered depending on the caries status of the children in both groups. Leptotrichia abundance was significantly (P < 0.05) lower at 7 days posttreatment in both the single- and multiappointment groups. Corynebacterium and Corynebacterium_matruchotii were significantly more abundant in the C1_1M and C1_3M groups than in the C1 and C1_7D groups (P < 0.05). Streptococcus, Haemophilus and Haemophilus_parainfluenzae were significantly more abundant in the C1_7D group than in the other groups (P < 0.05). CONCLUSION: A single session of treatment under general anaesthesia can cause dramatic changes in the microbial community structure and composition within 7 days after treatment, whereas treatment over multiple appointments may cause slow changes in oral flora diversity.


Subject(s)
Dental Caries , Dental Plaque , Humans , Dental Plaque/microbiology , Dental Caries/microbiology , Dental Caries/therapy , Child, Preschool , Male , Female , Microbiota , Anesthesia, General , RNA, Ribosomal, 16S
13.
Int J Biol Macromol ; 276(Pt 1): 133025, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852737

ABSTRACT

The Rosa cymosa Tratt, an herbal plant from the Rosaceae family, has historically been valued in China for its medicinal and edible properties. In this study, a novel polysaccharide from R. cymosa fruit, termed PRCP (purified R. cymosa polysaccharide), was isolated using water extraction, decolorization, deproteinization, and ion-exchange chromatography. The structural characteristics of PRCP were investigated using monosaccharide composition analysis, methylation, GPC, FTIR, CD, and NMR spectroscopy. The immunomodulatory effect and potential mechanism of PRCP were evaluated in vitro using a macrophage cell model. Results indicated that PRCP (37.28 kDa) is a highly branched polysaccharide (72.61 %) primarily composed of arabinogalactan, rhamnogalacturonan, and galactoglucan domains with 13 types of glycosidic linkage fragments. Furthermore, PRCP appears to modulate immunomodulatory effects by influencing the phosphorylation of P38 and JNK proteins in the MAPK pathway. Collectively, these findings highlight the potential of PRCP as a promising natural functional food ingredient for immunostimulation.


Subject(s)
Fruit , MAP Kinase Signaling System , Polysaccharides , Rosa , Rosa/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Mice , MAP Kinase Signaling System/drug effects , Fruit/chemistry , Animals , RAW 264.7 Cells , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Macrophages/drug effects , Macrophages/metabolism , Monosaccharides/analysis , Phosphorylation/drug effects
14.
Mol Psychiatry ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822069

ABSTRACT

Drug addiction therapies commonly fail because continued drug use promotes the release of excessive and pleasurable dopamine levels. Because the connection between pleasure and drug use becomes hard-wired in the nucleus accumbens (NAc), which interfaces motivation, effective therapies need to modulate this mesolimbic reward system. Here, we report that mice with knockdown of the cation channel TRPA1 (transient receptor potential ankyrin 1) were resistant to the drug-seeking behavior and reward effects of cocaine compared to their wildtype litter mates. In our study, we demonstrate that TRPA1 inhibition in the NAc reduces cocaine activity and dopamine release, and conversely, that TRPA1 is critical for cocaine-induced synaptic strength in dopamine receptor 1-expressing medium spiny neurons. Taken together, our data support that cocaine-induced reward-related behavior and synaptic release of dopamine in the NAc are controlled by TRPA1 and suggest that TRPA1 has therapeutic potential as a target for drug misuse therapies.

15.
Arch Virol ; 169(5): 115, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709425

ABSTRACT

Porcine circoviruses (PCVs) are a significant cause of concern for swine health, with four genotypes currently recognized. Two of these, PCV3 and PCV4, have been detected in pigs across all age groups, in both healthy and diseased animals. These viruses have been associated with various clinical manifestations, including porcine dermatitis and nephropathy syndrome (PDNS) and respiratory and enteric signs. In this study, we detected PCV3 and PCV4 in central China between January 2022 and February 2023. We tested fecal swabs and tissue samples from growing-finishing and suckling pigs with or without respiratory and systemic manifestations and found the prevalence of PCV3 to be 15.15% (15/99) and that of PCV3/PCV4 coinfection to be 4.04% (4/99). This relatively low prevalence might be attributed to the fact that most of the clinical samples were collected from pigs exhibiting respiratory signs, with only a few samples having been obtained from pigs with diarrhea. In some cases, PCV2 was also detected, and the coinfection rates of PCV2/3, PCV2/4, and PCV2/3/4 were 6.06% (6/99), 5.05% (5/99), and 3.03% (3/99), respectively. The complete genomic sequences of four PCV3 and two PCV4 isolates were determined. All four of the PCV3 isolates were of subtype PCV3b, and the two PCV4 isolates were of subtype PCV4b. Two mutations (A24V and R27K) were found in antibody recognition domains of PCV3, suggesting that they might be associated with immune escape. This study provides valuable insights into the molecular epidemiology and evolution of PCV3 and PCV4 that will be useful in future investigations of genotyping, immunogenicity, and immune evasion strategies.


Subject(s)
Circoviridae Infections , Circovirus , Genotype , Phylogeny , Swine Diseases , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Animals , Swine , China/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/epidemiology , Coinfection/virology , Coinfection/veterinary , Coinfection/epidemiology , Genome, Viral/genetics , Feces/virology
16.
Front Neurosci ; 18: 1386108, 2024.
Article in English | MEDLINE | ID: mdl-38765671

ABSTRACT

Deqi is an important prerequisite for acupuncture to achieve optimal efficacy. Chinese medicine has long been concerned with the relationship between Deqi and the clinical efficacy of acupuncture. However, the underlying mechanisms of Deqi are complex and there is a lack of systematic summaries of objective quantitative studies of Deqi. Acupuncture Deqi can achieve the purpose of treating diseases by regulating the interaction of local and neighboring acupoints, brain centers, and target organs. At local and neighboring acupoints, Deqi can change their tissue structure, temperature, blood perfusion, energy metabolism, and electrophysiological indicators. At the central brain level, Deqi can activate the brain regions of the thalamus, parahippocampal gyrus, postcentral gyrus, insular, middle temporal gyrus, cingulate gyrus, etc. It also has extensive effects on the limbic-paralimbic-neocortical-network and default mode network. The brain mechanisms of Deqi vary depending on the acupuncture techniques and points chosen. In addition, Deqi 's mechanism of action involves correcting abnormalities in target organs. The mechanisms of acupuncture Deqi are multi-targeted and multi-layered. The biological mechanisms of Deqi are closely related to brain centers. This study will help to explore the mechanism of Deqi from a local-central-target-organ perspective and provide information for future clinical decision-making.

17.
Arch Pharm Res ; 47(4): 360-376, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38551761

ABSTRACT

Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.


Subject(s)
Nucleus Accumbens , Psychotropic Drugs , Receptors, Dopamine D1 , Reward , Signal Transduction , Animals , Male , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/agonists , Mice , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Signal Transduction/drug effects , Rats , Psychotropic Drugs/pharmacology , Rats, Sprague-Dawley , Mice, Inbred C57BL , Phenethylamines/pharmacology , Self Administration , Dopamine/metabolism
18.
Genes Genomics ; 46(5): 519-529, 2024 05.
Article in English | MEDLINE | ID: mdl-38460098

ABSTRACT

BACKGROUND: GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE: In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS: GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS: We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION: Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.


Subject(s)
Antioxidants , Neuroblastoma , Parkinson Disease , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Hydrogen Peroxide , Oxidative Stress , Cell Death/physiology , Mice, Knockout , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
19.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Article in English | MEDLINE | ID: mdl-38523449

ABSTRACT

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Subject(s)
Antioxidants , Auricularia , Basidiomycota , Antioxidants/metabolism , Humidity , Fruit/metabolism , Catalase/metabolism , Ascorbic Acid , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Basidiomycota/metabolism , Lipid Peroxidation
20.
World J Gastrointest Surg ; 16(2): 382-395, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463377

ABSTRACT

BACKGROUND: The systemic inflammatory response index (SIRI) has been demonstrated to make a significant difference in assessing the prognosis of patients with different solid neoplasms. However, research is needed to ascertain the accuracy and reliability of applying the SIRI to patients who undergo robotic radical gastric cancer surgery. AIM: To validate the applicability of the SIRI in assessing the survival of gastric cancer patients and evaluate the clinical contribution of preoperative SIRI levels to predicting long-term tumor outcomes in patients, who received robotic radical gastric cancer surgery. METHODS: Initially, an exhaustive retrieval was performed in the PubMed, the Cochrane Library, EMBASE, Web of Science, and Scopus databases to identify relevant studies. Subsequently, a meta-analysis was executed on 6 cohort studies identifying the value of the SIRI in assessing the survival of gastric cancer patients. Additionally, the clinical data of 161 patients undergoing robotic radical gastric cancer surgery were retrospectively analyzed to evaluate their clinicopathological characteristics and relevant laboratory indicators. The association between preoperative SIRI levels and 5-year overall survival (OS) and disease-free survival (DFS) was assessed. RESULTS: The findings demonstrated an extensive connection between SIRI values and the outcome of patients with gastric cancer. Preoperative SIRI levels were identified as an independent hazard feature for both OS and DFS among those who received robotic surgery for gastric cancer. SIRI levels in gastric cancer patients were observed to be associated with the presence of comorbidities, T-stage, carcinoembryonic antigen levels, the development of early serious postoperative complications, and the rate of lymph node metastasis. CONCLUSION: SIRI values are correlated with adverse in the gastric cancer population and have the potential to be utilized in predicting long-term oncological survival in patients who undergo robotic radical gastric cancer surgery.

SELECTION OF CITATIONS
SEARCH DETAIL