Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 855351, 2022.
Article in English | MEDLINE | ID: mdl-35600882

ABSTRACT

Chemotherapy serves as the first choice in clinic to treat advanced gastric cancer. However, emerging evidence indicated the induction of drug resistance and cancer stem cells occasionally by chemotherapy, which seriously limit the therapeutic effects, but the regulatory mechanism remains unclear. Here we treated two human gastric cancer cell lines SGC7901 and BGC823 with 5-Fluorouracil (5-Fu) or Cisplatin (DDP) in vitro. The survived cells showed significant increase of drug resistance, cell stemness and cytokine GM-CSF expression and secretion. As such, GM-CSF was applied to stimulate gastric cancer cells, followed by the subpopulation of CD133 + CSC analysis, sphere formation assay and stemness genes expression analysis. As a result, CSCs showed induction by GM-CSF treatment. A gastric cancer animal model further indicated that the gastric cancer cells significantly promoted tumor growth after GM-CSF treatment in vivo. High-throughput miRNA and mRNA sequencing analyses identified a subset of miRNAs and mRNAs under regulation of both 5-Fu and GM-CSF in gastric cancer cells, including upregulation of miR-877-3p and downregulation of SOCS2. Targeted overexpression or knockdown of miR-877-3p in gastric cancer cells revealed the oncogenic function of miR-877-3p in regulating gastric cancer by suppressing target gene SOCS2. Jak2/Stat3 signaling pathway, as a downstream target of SOCS2, showed activation in vitro and in vivo after treatment with miR-877-3p or GM-CSF. Our findings not only revealed a novel mechanism through which chemotherapy induced CSCs in gastric cancer via GM-CSF-miRNA-Jak2/Stat3 signaling, but also provided an experimental evidence for appropriate dose reduction of adjuvant chemotherapy in treatment of cancer patients.

2.
Chem Eng J ; 398: 125570, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32508521

ABSTRACT

The UV-induced advanced oxidation processes (AOPs, including UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2 ) degradation kinetics and energy requirements of iopamidol as well as DBPs-related toxicity in sequential disinfection were compared in this study. The photodegradation of iopamidol in these processes can be well described by pseudo-first-order model and the removal efficiency ranked in descending order of UV/Cl2  > UV/H2O2  > UV/NH2Cl > UV/ClO2  > UV. The synergistic effects could be attributed to diverse radical species generated in each system. Influencing factors of oxidant dosage, UV intensity, solution pH and water matrixes (Cl- , NH4 + and nature organic matter) were evaluated in detail. Higher oxidant dosages and greater UV intensities led to bigger pseudo-first-order rate constants (Kobs) in these processes, but the pH behaviors exhibited quite differently. The presence of Cl- , NH4 + and nature organic matter posed different effects on the degradation rate. The parameter of electrical energy per order (EE/O) was adopted to evaluate the energy requirements of the tested systems and it followed the trend of UV/ClO2  > UV > UV/NH2Cl > UV/H2O2  > UV/Cl2 . Pretreatment of iopamidol by UV/Cl2 and UV/NH2Cl clearly enhanced the production of classical disinfection by-products (DBPs) and iodo-trihalomethanes (I-THMs) during subsequent oxidation while UV/ClO2 and UV/H2O2 exhibited almost elimination effect. From the perspective of weighted water toxicity, the risk ranking was UV/NH2Cl > UV/Cl2 > UV > UV/H2O2 > UV/ClO2 . Among the discussed UV-driven AOPs, UV/Cl2 was proved to be the most cost-effective one for iopamidol removal while UV/ClO2 displayed overwhelming advantages in regulating the water toxicity associated with DBPs, especially I-THMs. The present results could provide some insights into the application of UV-activated AOPs technologies in tradeoffs between cost-effectiveness assessment and DBPs-related toxicity control of the disinfected waters containing iopamidol.

3.
Chemosphere ; 221: 292-300, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30640012

ABSTRACT

In this paper, it was demonstrated that UV/H2O2 process can not only obviously promote the degradation rate of IO3-, but also greatly enhance iodo-trihalomethanes (I-THMs) formation in sequential chloramination. UV/H2O2 exhibited much faster IO3- decomposition than either UV or H2O2 treatment alone due to the contribution of highly reactive species including O-, OH and eaq-. The degradation rate of IO3- was affected by H2O2 dosages, pH, UV intensity as well as the presence of natural organic matter (NOM). The calculated pseudo-first order rate constant gradually increased with H2O2 dosages and solution pH, but behaved directly proportional to the UV intensity. Although NOM remarkably reduced the degradation rate of IO3- in UV/H2O2 process, their presence greatly enhanced the formation of I-THMs during subsequent chloramination. The overwhelming majority of iodoform at high UV fluences was also observed, which indicated improved iodination degrees of the detected I-THMs. UV/H2O2 was proved to be more capable on the evolution of IO3- to I- as well as I-THMs than UV and thereby enhanced the toxicity of disinfected waters in the following chloramination process. This study was among the first to provide a comprehensive understanding on the transformation of IO3- as the emerging iodine precursor to form I-THMs via diverse advanced oxidation process technologies like UV/H2O2.


Subject(s)
Disinfection/methods , Hydrogen Peroxide/chemistry , Iodates/chemistry , Photochemical Processes , Ultraviolet Rays , Kinetics , Trihalomethanes/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...